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Executive summary 
This deliverable is the validation report of the Earth Observation (EO) data products developed during 
the ENVISION project. The produced EO services are tailored to monitor agricultural malpractices and 
the environmental impacts. This document highlights the performance of every product that was 
developed in ENVISION. More specifically, for every business case the pilot, the data collection, the 
validation results and limitations are described. This work package aims at designing and developing 
the EO data products of the ENVISION platform, which will address all the potential customers’ specific 
needs. An initial version of this deliverable was provided in M18 as part of D3.4, the Data Product 
Validation Report. This version builds upon that initial report, incorporating additional insights and 
results for further validation based on refinement processes. The results presented herein represent 
the final outcomes based on historical data, summarizing our efforts throughout the development of 
ENVISION products and services. For your reference, Table 1 below presents a matrix that aligns the 
developed data products with the corresponding outputs within the service. 

Table 1: ENVISION data products and the final services provided 

ID Related 
Task Data Product Business 

Case Services Service 
Provider 

DP1 Task 3.3 

Analytics on 
Vegetation and 
Soil Index Time-

series 
 

NMA Harvest events detection 

NOA 

NMA & 
CAPO 

Stubble burning identification on 
arable land 

CAPO Detection of illegal land clearing in 
Natura2000 protection areas 

NMA & 
CAPO 

Minimum soil cover for soil 
erosion 

NMA & 
CAPO 

Runoff risk assessment for the 
reduction of water pollution in 

nitrate vulnerable areas 

DP2 Task 3.4 Cultivated crop 
type maps 

NMA & 
CAPO 

Confirmation of GSAA 

NOA 
Smart sampling for OTSC 

inspections  

Crops diversification compliance 

DP3 Task 3.5 
Grassland 

mowing events 
detection 

NMA Grassland activity monitoring and 
management NOA 

DP4 Task 3.6 Soil condition 
monitoring LV Top-soil qualitative soil organic 

carbon estimations EV ILVO 

DP5 Task 3.7 

Crop growth 
Monitoring and 
identification of 
organic farming 

practices 

OCS 

Distinction of organic farming 
practices 

AgroApps 

Crop growth monitoring 
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Introduction 

The validation planning section serves to outline the pilot areas and sample data used for validating 
our data products and services. We won’t deep into the detailed specifications of the project's 
developed methodologies and study areas, as all relative information is available in the respective 
deliverables (D3.3, "Data product initial report" and D3.7, "Data products final report"). 
 
ENVISION project involved a number of discrete pilot areas (business cases), data of differing dates, 
quality, resolution, or scale that will be used both during the validation procedure and the operational 
function. The general concept of the validation strategy consists of collecting the in-situ data, provided 
by the business cases’ end-users of ENVISION, as well as remote sensing data collected both from the 
end-user and service providers during the operational period of project. 
 
This element will describe all the relevant products of the locational data collection and image 
acquisition design, will define the key attributes to measured and validated, and will indicate the 
number and type of samples (e.g. geospatial data requirements, samples definition and description, 
satellite data acquired) expected. It will also describe where, when and how measurements or images 
were acquired. 
 
Within validation planning, decisions are made on the type and number of samples and locations of 
observations. This deliverable will explain how these decisions were derived to meet the specifications 
of the planned interpretation (e.g. accuracy and precision) or analysis. 
 
Useful Metrics: 
 
Several essential metrics will used to evaluate the performance of the results. These metrics are crucial 
tools for assessing the performance and accuracy of your deliverable's analysis, providing a 
comprehensive view of how well your models or methods are performing in a wide range of scenarios. 
 
Overall Accuracy:  
Overall accuracy is a straightforward metric that measures the proportion of correctly classified 
instances to the total number of instances in a dataset. It is expressed as: 
 

𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 	!"#$%&	()	*(&&%+,	-&%./+,/(01
2(,34	!"#$%&	()	-&%./+,/(01

 

 
Cohen's Kappa Coefficient:  
Cohen's Kappa assesses the agreement between observed and expected classifications, considering 
the possibility of random chance. It's particularly useful for problems with imbalanced class 
distributions. The formula is:  
 

𝑘 = 	
𝑃5 − 𝑃%
1 − 𝑃%
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where Po is the observed agreement, and Pe is the expected agreement. 
 
Precision, Recall, and F1 Score:  
These metrics are fundamental in binary classification tasks. Precision (User Accuracy) measures the 
proportion of true positive predictions among all positive predictions, high precision means that when 
the model predicts something as positive, it is often correct. Recall (Producer Accuracy) gauges the 
ability to identify all actual positives, high recall means the model can effectively find most of the 
positive cases in the dataset. The F1 score combines them to find a balance between precision and 
recall; this is useful when you want to find a trade-off between them. It is particularly valuable when 
you need a single metric that considers both false positives and false negatives. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠
	

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 	
𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠

𝑇𝑟𝑢𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠 + 𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒𝑠
	

 

𝐹1	𝑆𝑐𝑜𝑟𝑒 = 2
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

	

 
Mean Absolute Error (MAE):  
MAE quantifies the average absolute difference between predicted and actual values. It's an excellent 
measure of prediction accuracy and is calculated as: 
 

𝑀𝐴𝐸 =
1
𝑛
@
0

/67

|𝑦/ − 𝑦B/|	

	
Mean Squared Error (MSE):  
MSE computes the average of squared differences between predicted and actual values, giving more 
weight to large errors: 
 

𝑀𝑆𝐸 =
1
𝑛
@
0

/67

(𝑦/ − 𝑦B/)8	

 
R-squared (R²) or Coefficient of Determination:  
R² measures the goodness of fit of a regression model. It indicates the proportion of the variance in 
the dependent variable that is explained by the independent variables. The formula for R² is: 
 

𝑅8 = 1 −
𝑆𝑆𝑅
𝑆𝑆𝑇

	

 
where SSR is the sum of squared residuals and SST is the total sum of squares. 
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1. BC1: Monitoring multiple environmental and climate requirements of 

CAP – Lithuania 

This section outlines the validation dataset in order to evaluate the outputs provided by the respective 
data products (DP1-DP3) applied in case of Lithuania (BC1). Detailed information on the methodology 
of the respective algorithms developed is provided in D3.7. 

1.1. DP1. Analytics on Vegetation and Soil-Index Time-series 

This data product is designed to analyze time-series data related to vegetation and soil indices in 
Lithuania. It offers several algorithmic components: 
• Minimum Soil Cover for Soil Erosion: This feature provides data on soil percentage and minimum 

soil cover, which helps assess the risk of soil erosion in different regions of Lithuania, particularly 
in agricultural areas. It can assist in making informed land management decisions to prevent soil 
erosion. 

• Runoff Risk Assessment for the Reduction of Water Pollution in Nitrate Vulnerable Areas: This 
component assesses the risk of runoff and water pollution in nitrate vulnerable areas of Lithuania. 
It can be valuable in managing and mitigating water pollution, especially in regions with intense 
agricultural activities. 

• Harvest Event Detection: This feature identifies the occurrence of harvest events in agricultural 
areas. It can be used to track crop harvesting seasons, optimize farm operations, and monitor crop 
yields. 

• Stubble Burning Identification: This component is designed to detect and identify instances of 
stubble burning, which can be a concern for air quality and environmental impact. It can help 
monitor and enforce regulations related to stubble burning practices. 

 
Sampling Description 
 
Minimum oil cover for soil erosion 
This service is designed to detect and promote the adoption of minimum soil cover practices to 
safeguard soil against erosion. In order to evaluate the effectiveness of this method, we carefully 
gathered data through on-site field inspections (OTSC) conducted by the NPA. These inspections took 
place at the end of the 2022 cultivation period, immediately following the initial operational 
implementation of ENVISION, and were guided by the alerts generated by the system’s algorithm. The 
validation dataset comprises 82 instances of black fallow parcels, each exceeding a minimum size of 
0.5 hectares. These parcels were strategically distributed across the entire country. It's important to 
note that out of these cases, 42 were found to be non-compliant with the relative regulations. 
 
According to these, black fallow lands must be sown or planted with agricultural crops before the 15th 
of November each year. Therefore, our validation dataset primarily includes instances where these 
regulations were not adhered to, highlighting the need for detection through the service. To ensure 
the precision of our assessments, it's worth mentioning that on-site inspections for these fields 
occurred within a specific timeframe, starting in mid-November and concluding in mid-December of 
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the same year. This carefully chosen timeframe was intentionally selected to guarantee accurate 
evaluations of compliance with the minimum soil cover regulations. 
 
Furthermore, to enhance the quality of the assessment, NOA experts conducted photo-interpretations 
into the total 207 predicted cases for 2022. This involved carefully examining cloud-free Sentinel-2 
images to provide additional validation and enrich the assessment with a broader set of samples. More 
specifically, this process is facilitated utilizing the datacube services hosted in Creodias and developed 
by NOA. This advanced system significantly streamlines the photo-interpretation process and allows 
for the efficient and fast analysis of the available Sentinel-2 satellite data. Taking into advantage the 
geometry of the fields, this scientifically rigorous method ensures precise and reliable results into our 
evaluation. An analysis on the number of available samples collected is listed in Table 2 below. 
 
Runoff risk assessment for the reduction of water pollution in nitrate vulnerable areas 
Under CAP regulations, it is imperative to avoid the application of manure and/or slurry in the coastal 
protection zones around water bodies as delineated in the Surface Water Protection Zone layer. In 
response, we have devised a runoff risk assessment procedure that considers the proximity of each 
agricultural parcel to the nearest water surfaces. Our assessment relies on data sourced from 
Lithuania's hydrographic network, generously provided by the NPA, as illustrated in Figure 1. It's 
important to note that this service was finally deployed only into a sample pilot area of Lithuania during 
the year 2022, as indicated by the red-highlighted region in Figure 1.   
 
Additionally, it's worth mentioning that the output generated for this service is of a qualitative nature. 
In other words, our validation process primarily focuses on qualitative assessments rather than 
quantitative metrics due to the inherently conductive nature of the service. This is a risk assessment; 
as such it cannot be measured directly for the respective paying agencies. Overall, this approach 
ensures that we maintain a high level of compliance with CAP regulations in the pilot area while 
providing valuable insights into the effectiveness of our runoff risk assessment procedure. 
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Figure 1: Lithuania’s hydrographic network and pilot area for runoff risk assessment depicted with red colour. 

Stubble burning identification on arable land 
The stubble burning identification, has been specifically provided to address CAP requirements 
concerning the burning of agricultural plants and stubbles (an example is depicted in Figure 2 below). 
Unfortunately, for the year 2022, we faced a challenge as the NPA could only provide us with 17 
validation burn parcels instances recorded from the local fire departments, which was insufficient for 
a thorough evaluation. To address this limitation and ensure the accuracy of our results, we took an 
additional step. Again, we turned into optical methods through photo-interpretation using datacube 
services. In this process, we closely examined the total amount of 127 burned indicated cases, which 
was quite manageable. Our team meticulously reviewed these cases to determine if stubble burning 
had actually occurred, relying on available Sentinel-2 images. This extra step was necessary due to the 
absence of the usual validation data.  

 
Figure 2: Example case of stubble burning in arable crops in Lithuania. 

Harvest event detection 
To assess the performance of harvest event detection, we relied on validation data provided by the 
NPA. Specifically, they supplied us with 197 cases for the year 2022 and 77 cases for the year 2023, 
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each accompanied by the precise date of the harvest event. Additionally, to further enhance the 
evaluation process, NOA conducted again a photo-interpretation exercise. We randomly selected 
samples from various arable cultivations, including winter cereals, spring cereals, vegetables, potatoes, 
and others. This exercise aimed to evaluate how accurately our service identified harvest events 
through visual inspection within a short time-range before or after the predicted date. An analysis on 
the number of available samples collected is listed in Table 2 below. 

 
Figure 3: Validation samples geographical distribution across Lithuania territory for DP1. 

Table 2: Summary numerical analysis of the samples collected for the validation of DP1 services in Lithuania. 

 2022 
(NPA) 

2022 
(NOA) 

2022 
(Total) 

2023 
(NPA) 

2023 
(NOA) 

2023 
(Total) 

Minimum soil cover 42 207 249 - - - 
Stubble Burning 17 127 144 - - - 
Harvest Event 
Detection 

197 1013 1210 100 1322 1422 

 
Validation Results 
 
Minimum soil cover for soil erosion 
The minimum soil cover detection algorithm was exclusively applied for the year 2022, since this CAP 
requirement should be checked after mid-November of the current year of implementation. 
Unfortunately, for the year 2023, this assessment couldn't be carried out due to the end of the project 
and the termination of the Creodias infrastructure contract on August 31, 2023. As described also in 
D3.7, a binary mask is calculated based on the mutual fulfilment of the following conditions: 
 

i. 0  <  𝑁𝐷𝑉𝐼  <  0.3   
ii. 0  <  𝑆𝐴𝑉𝐼  <  0.35 
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iii. 𝐵2 − 𝐵1  >  0 
iv. 𝐵3 − 𝐵2  >  0  
v. 𝑁𝐵𝑅2  <  0.35  

Furthermore, to categorize an area as bare ground from satellite observations, a minimum of 20% of 
clear pixels must show soil presence, even if the entire area isn't entirely devoid of vegetation. These 
specific thresholds have been selected to optimize the trade-off between recall and precision in the 
results. 
 
Based on the aforementioned parameters, the algorithm flagged 207 alert cases of black fallow fields, 
amounting to less than 2% of the total black fallow declarations. Through Sentinel-2 image analysis, 
the algorithm achieved a precision accuracy rate of 83%. This precision is based on no evidence of any 
sown practice with other agricultural crops in 171 out of the 207 parcels, using at least one cloud-free 
image available for analysis between late August and late November. Unfortunately, we cannot 
objectively calculate recall due to the absence of a representative ground truth samples. However, it's 
noteworthy that 40 of the predicted cases intersected with the 42 non-compliant cases provided by 
NPA, resulting in a rate of success of over 95% on the available minimum soil cover incompliant cases. 
 
Run-off Risk Assessment 
The run off risk assessment algorithm takes into account the parcel’s proximity to water surfaces. 
Initially, the algorithm iterates over every vertex of the parcel and calculate the water proximity. The 
minimum distance to a water surface is assigned as the corresponding value to each parcel. In addition, 
the Revised Universal Soil Loss Equation (RUSLE) has been calculated as it estimates the annual soil 
loss that is due to erosion through a factor-based approach using as input variables, described in D3.3.  
 
it's crucial to clarify that the components on which RUSLE depends on (P, R, K, LS, and C) are spatially 
distributed variables. These factors are not represented by single, uniform values for an entire country 
but are calculated at a pixel level (10m spatial resolution by resampling process). The spatial variability 
accounts for differences in land use, terrain, and other localized factors, making them more accurate 
and context-specific. All the involved parameters are downloaded for the whole Europe from the 
ESDAC, cropped to each country borders and resampled to the Sentinel 2 spatial resolution (10 m), 
except from the LS and C factor, which were calculated using LPIS and NDVI again at 10m resolution. 
The runoff risk assessment model, based on RUSLE and water proximity, leverages these spatially 
distributed parameters to provide precise and localized insights, which are crucial for understanding 
the environmental dynamics and potential erosion risk within specific regions. Therefore, while it's not 
feasible to provide a single value per component for each country, the methodology ensures that the 
model accounts for the inherent heterogeneity of environmental conditions across the landscape, 
resulting in more accurate and region-specific assessments. Having calculated RUSLE and the minimum 
distance from a water surface, every parcel is labelled with a risk category as the following Table 3 
indicates:  

Table 3: The rules for runoff risk assessment. 

RUSLE Water Proximity (meters) 
<=10 <=50 >50 >100 

<=4 High Low Low Very Low 
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>4 and <=8 High Moderate Low Very Low 
>8 and <=15 High High Moderate Very Low 

>15 Very High Very High Moderate Very Low 
 
Taking into consideration the values of water proximity and RUSLE, runoff risk has been computed for 
each parcel. The risk level for many parcels is high due to the fact that they are close to water surfaces. 
An analysis of the results exported is presented in Table 4. Furthermore, Figure 4 depicts the 
visualization of the parcels along with their categories and the water surfaces around them. Both 
layers’ data is directly retrieved from the ENVISION database.  

Table 4: Run-off Risk Assessment Results. 

 Very Low 
or Low Risk 

Moderate Risk Very High or 
High Risk 

Algorithm 79072 25167 5107 
  

 
Figure 4: Visualization of the run-off risk for a subset of parcels along with the water surfaces around them. 

Stubble Burning Identification 
Similar to minimum soil cover, the algorithm's application was limited to the operational year 2022, 
resulting in the identification of 127 stubble burning cases. After conducting a quality check on the 
results provided using Sentinel-2 imagery, it was determined that only 31 (25%) of these were indeed 
genuine burning events. It's worth noting that out of the 17 ground truth cases reported by NPA and 
the local fire departments, more than half (12 cases) were among those identified by the algorithm. 
 
A notable challenge encountered in Lithuanian cases was the distinction between burning of stubbles 
and plowing practices taking place in arable lands. These two activities often exhibit similar behavior 
in the monitoring indices, leading to potential misidentification (see Figure 5). Despite this, NPA 
expressed satisfaction with the algorithm's performance since it successfully pinpointed the majority 
of actual burn events and also revealed new instances of non-compliance (see Figure 6). 
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Figure 5: Example of plowing practise in arable land that was wrongly identified as stubble burning. 

 
Figure 6: A stubble burning event successfully identified by the algorithm between 5 August and 12 August and 

was not reported by the local fire departments. 

In D3.7, it's noted that stubble burning events typically exhibit significant spectral discrepancies across 
the affected area and the evaluated pixels, with only a small portion of the parcel actually being 
burned. To accurately identify burnt regions, a secondary method calculates the mean and standard 
deviation of post NBR after the event. True stubble burning events in Lithuania are identified when 
post_NBR mean value is above a specific threshold (threshold_1), and the standard deviation of 
post_NBR remains considerably high (threshold_2). Below is a summary analysis of the accuracy (Table 
5) obtained based on the 17 events instances provided by NPA and local fire stations. 

Table 5: Stubble burning detection performance after secondary filtering for some indicative set of parameters. 

set Mean (NBR) 
(threshold_1) 

Std (NBR) 
(threshold_2) 

Total number 
of burned 

cases 
detected 

Total number 
of correct 

cases 
detected out 

of 17 provided 
by NPA 

Precision 
(%) 

1 -0.12 0.02 9902 13 0.13 
2 -0.06 0.02 4867 13 0.27 
3 -0.03 0.02 755 13 1.72 
4 -0.12 0.04 5899 13 0.22 
5 -0.06 0.04 3678 13 0.35 
6 -0.03 0.04 654 12 1.83 
7 -0.12 0.06 1212 12 0.99 
8 -0.06 0.06 127 12 9.45 
9 -0.03 0.06 61 5 8.20 

10 -0.12 0.08 151 6 3.97 
11 -0.06 0.08 27 2 7.41 
12 -0.03 0.08 0 0 - 

 
Harvest Event Detection 
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The “harvest event detection” algorithm is a threshold-based routine looking for abrupt drops on VIs 
values (refer on D3.7). These thresholds have been set up on samples collected from previous 
cultivation periods (i.e., 2020, 2021 and 2022) in order to maximize the trade-off between recall and 
precision. In Table 6 below, the top-5 combinations of threshold parameters are presented in 
descending order based on their F1-score for harvest cases of 2022. 
 
Table 6 Top-5 set of parameters for harvest event detection in Lithuania based on harvested samples provided 

by NPA for 2022. 

 dNDVI R_NDVI NDMI dNDMI R_NDMI PSRI dPSRI BSI dBSI Precision 
(%) 

Recall 
(%) 

1 0.05 0.001 0.2 0.03 0.001 0.08 0.03 -0.12 0.03 99.4 96.6 

2 0.05 0.001 0.15 0.03 0.001 0.08 0.01 -0.1 0.03 99.1 94.9 

3 0.06 0.001 0.2 0.02 0.001 0.08 0.01 -0.12 0.03 99.5 93.8 

4 0.05 0.001 0.15 0.03 0.001 0.08 0.03 -0.12 0.03 98.6 94.3 

5 0.04 0.001 0.2 0.02 0.001 0.08 0.03 -0.12 0.03 98.8 93.8 

 
The algorithm performs quite well, particularly in predicting the day of the harvest event with 
remarkable accuracy. During the evaluation process for both operational years of implementation, it 
consistently achieved satisfactory results, whether in cases of actual harvest events or non-harvest 
scenarios. Specifically, when assessing the samples provided by NPA, the algorithm demonstrated its 
effectiveness. A prediction has been considered as correct only if this was detected within a range of 
6 days before to 18 days after a known cut. In 2022, it correctly identified 172 out of 178 actual 
harvested cases and 18 out of 19 non-harvested cases. For 2023, it achieved a perfect recall rate on 77 
harvested cases and only missed 2 out of 23 non-harvested cases. Table 6 summarize the analysis of 
these results. Additionally, a distribution analysis of the deviation between the estimated day of the 
harvest event and the actual date was performed for the recovered harvested cases, providing insights 
into the algorithm's precision in predicting harvest events for both years (see Figure 7). 
 
In the samples evaluated by NOA through photo-interpretation, the values of recall and precision were 
consistently high for both harvested and non-harvested occasions in both 2022 and 2023 (see Table 
7). These results align perfectly with the findings from NPA's field inspections, demonstrating the 
algorithm's reliability and corroborating its performance. An example of Sentinel-2 images capturing a 
harvest event predicted from the algorithm is depicted in Figure 8. 
 

Table 7: Analysis on recall, precision and support of the harvest event detection on samples collected. 

Cultivation Period 2022  2023  
Dataset Condition Recall Precision Support Recall Precision Support 
NPA No Harvest 0.947 0.750 19 0.913 1.0 23 

Harvest 0.966 0.994 178 1.0 0.975 77 

NOA No Harvest 0.853 0.901 197 0.893 0.888 205 

Harvest 0.979 0.977 816 0.979 0.980 1117 
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Figure 7: Counts of the deviation in days between estimated day of the parcel’s harvest and the actual date 

reported on NPA’s OTSCs validations. 

 

 
Figure 8: A harvest event example successfully identified by the algorithm between 21 July and 5 August. 

 

Discussion and limitations 
 
The algorithmic components within DP1 exhibit an impressive overall accuracy of 98% according to 
NPA, rendering them suitable for integration into in-house infrastructures. Notably, the Harvest Events 
Detection algorithm demonstrates exceptional performance across diverse regions. 
 
Nevertheless, several limitations have surfaced. 
 
First, the Minimum Soil Cover for Soil Erosion algorithm relies on November data, a period with 
extended cloud coverage. This dependence on clear-sky conditions during a cloudy month poses a risk 
of reduced accuracy if essential Sentinel-2 images are obscured by clouds. This vulnerability may 
compromise the algorithm's reliability. 
 
Second, there is a temporal misalignment in the scheduling of the Minimum Soil Cover for Soil Erosion 
algorithm compared to other components. November scheduling for this algorithm conflicts with the 
timing requirements of the rest of the algorithms. This misalignment can lead to operational challenges 
and necessitate extending the Creodias subscription to cover the entire cultivation year, potentially 
imposing financial burdens. 
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The Run-off Risk Assessment for Water Pollution Reduction in Nitrate Vulnerable Areas evaluation is 
qualitative as it operates as a risk assessment algorithm. It identifies high-risk areas based on proximity 
to water bodies and soil characteristics. Water pollution is primarily influenced by farming practices, 
and quantitative measurements are not feasible within this framework. Nevertheless, it can guide 
control bodies on the strategic monitoring of farming practices and regulatory compliance. 
 
Finally, the Stubble Burning Identification algorithm encounters difficulties in distinguishing between 
farming tillage activities and actual stubble burning events. This limitation may lead to false positives 
or negatives, potentially hindering effective monitoring and regulation of stubble burning practices. 
Nevertheless, NPA has expressed satisfaction with the algorithm's performance. They justify this by 
keeping the total number of predictions relatively low and by ensuring that the majority of actual burnt 
cases are included. This approach suggests that the algorithm, while not perfect, still serves the NPA's 
needs adequately and aligns with their operational requirements. 
 
All in all, the modules mentioned rely on manually optimized parameters to operate effectively. These 
parameters, often fine-tuned through human expertise, are crucial in influencing the modules' 
behavior and performance. Through careful adjustments, operators can enhance the modules' 
capabilities. While manual optimization can be a time-intensive process, it plays a significant role in 
achieving desired outcomes for the implementation of the respective services to other regions. This 
human touch, guided by experience and domain knowledge, can lead to finely tuned systems that 
operate with precision and efficiency. 

1.2. DP2. Cultivated Crop Type Maps (CCTM) 

Product Description 
 
To assess the performance of cultivated crop type maps product, we rely on a robust validation dataset 
provided by NPA. This dataset includes a substantial number of samples, with 51,061 instances for 
2022 and 35,077 for 2023, during the nationwide deployment of ENVISION.  
 
We've taken great care to collect these samples to ensure they represent a balanced cross-section of 
different types of crops (see Figure 9). These samples are sourced through a two-fold approach by 
NPA: first, from remote sensing images, primarily utilizing the Sentinel-2 satellite data to identify and 
categorize crop types. Second, a significant portion of the validation dataset is derived from on-site 
field visits, where experts conduct in-person inspections to validate the accuracy of the crop type 
maps. The number of the aforementioned available samples is visualized in Figure 10. It's worth noting 
that we've selected fields of varying sizes to cover different types of farming landscapes (refer to Figure 
11). Additionally, as it can be depicted in Figure 12, we've collected samples evenly from various parts 
of Lithuania to ensure a well-rounded representation.  
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Figure 9: Crops distribution of validation samples for CCTM for 2022 and 2023. 

 

 
Figure 10: Number of available OTSC and RS validation for both operational year. 
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Figure 11: Distribution of parcel size of the CCTM validation. Area is calculated in hectares (ha). 

 

 
Figure 12: Validation samples geographical distribution across Lithuania territory for CCTM DP. 

All the above ensures a comprehensive and reliable validation dataset that enables us to thoroughly 
evaluate the performance of our crop type maps product in real-world national-scale operational 
scenarios. 
 
Validation Results 
 
Crops Classification Results Performance 
As detailed in D3.3 and D3.7, multiple crop type maps are generated during the cultivation period, 
starting from early April and continuing until the end of August. The accuracy of these models gradually 
improves as more data is incorporated into the analysis, reaching its peak performance by the end of 
August.  
 
Table 8 displays the validation results for various machine learning models evaluated in both early 
September 2022 and 2023. Among these models, some have notably extended inference times. 
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Notably, the Random Forest model stands out by delivering the optimal results in terms of accuracy 
and elapsed time. 
 

Table 8: Classification performance for different machine learning models based on the predictions provided at 
the early September for 2022 and 2023. 

 2022 2023 
 RF SVM XGBoost MLP RF SVM XGBoost MLP 

Recall (Macro Avg.) 0.75 0.68 0.75 0.66 0.75 0.68 0.75 0.66 
Recall (Weighted Avg.) 0.90 0.86 0.92 0.85 0.90 0.86 0.92 0.85 
Precision (Macro Avg.) 0.88 0.90 0.88 0.86 0.88 0.90 0.88 0.86 
Precision (Weighted 
Avg.) 

0.90 0.92 0.91 0.89 0.90 0.92 0.91 0.89 

F1-Score (Macro Avg.) 0.78 0.72 0.79 0.69 0.78 0.72 0.79 0.69 
F1-Score (Weighted Avg.) 0.89 0.85 0.90 0.79 0.89 0.85 0.90 0.79 
Overall Accuracy 0.90 0.87 0.91 0.84 0.90 0.87 0.91 0.84 
Kappa Coeff. 0.85 0.82 0.86 0.79 0.85 0.82 0.86 0.79 
Elapsed Time (min.) 5.3 35.1 19.6 5.9 4.1 27.3 12.9 4.0 

 
Table 9 provides the classification report for 22 distinct crop classes, reflecting the validation analysis 
conducted throughout the cultivation period for 2022 and 2023. This report offers a snapshot of the 
model's final classification results, which were assessed at the beginning of September. 
 
In terms of accuracy, the classifier performs quite well for most crop classes, achieving high accuracy 
rates. However, there are exceptions, particularly for classes with very limited support data (e.g., 
clover, green fallow, lucerne). Additionally, the performance tends to be lower for permanent crops, 
often due to confusion with grasslands. Overall, the model demonstrates an impressive level of 
accuracy, coming very close to the 90% mark for both cultivation years, with similar performance 
observed in both years. It's important to note that certain classes, such as mixed crops (e.g., 
agricultural mixes, other vegetables, and other crops on arable land), were excluded from this analysis 
because they lack a distinct spectral profile, and the classification model struggles to perform well on 
these cases. 
 

Table 9: Classification Report based on the predictions provided at the early September for 2022 and 2023. 

 2022 2023 
 Precision Recall F1-Score Support Precision Recall F1-Score Support 

Beans 0.87 0.96 0.91 533 0.87 0.96 0.91 368 
Black Fallow 0.78 0.75 0.77 665 0.79 0.76 0.77 452 
Buckwheat 0.78 0.92 0.84 421 0.79 0.91 0.84 293 
Clover 0.98 0.20 0.33 662 0.98 0.20 0.33 452 
Corn 0.93 0.96 0.95 614 0.93 0.95 0.94 433 
Grassland 0.92 0.97 0.95 26861 0.92 0.97 0.95 18365 
Green Fallow 0.75 0.64 0.69 977 0.76 0.64 0.70 670 
Lucerne 0.93 0.18 0.30 387 0.95 0.16 0.28 259 
Oats 0.77 0.88 0.82 1844 0.77 0.89 0.83 1279 
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Peas 0.87 0.89 0.88 840 0.88 0.89 0.88 579 
Permanent 
Crops 0.73 0.45 0.56 1317 0.74 0.47 0.57 915 

Potatoes 0.70 0.84 0.76 1051 0.69 0.85 0.76 709 
Protein Crops 0.97 0.63 0.76 403 0.95 0.63 0.76 270 
Spring Barley 0.89 0.78 0.83 1538 0.88 0.78 0.83 1082 
Spring Rape 0.95 0.79 0.87 160 0.96 0.78 0.86 104 
Spring 
Triticale 0.98 0.59 0.73 179 0.97 0.58 0.73 122 

Spring Wheat 0.86 0.84 0.85 1633 0.86 0.84 0.85 1143 
Winter Barley 0.96 0.77 0.86 375 0.95 0.77 0.85 271 
Winter Rape 0.97 0.97 0.97 1666 0.96 0.97 0.97 1143 
Winter Rye 0.94 0.85 0.89 579 0.93 0.85 0.89 416 
Winter 
Triticale 0.84 0.73 0.78 1109 0.84 0.72 0.78 790 

Winter Wheat 0.92 0.93 0.93 7247 0.92 0.93 0.93 4962 
Macro Avg. 0.88 0.75 0.78 

51061 
0.88 0.75 0.78 

35077 Weighted 
Avg. 0.90 0.90 0.89 0.90 0.90 0.89 

Overall 
Accuracy 0.90 0.90 

Kappa Coeff. 0.85 0.85 
 
The results exhibit a noticeable improvement as the cultivation period progresses (see Figure 13). This 
enhancement can be attributed to the increasing clarity of spectral characteristics, allowing for more 
effective discrimination between different crop types. Notably, spring crops such as beans, peas, and 
corn demonstrate a significant boost in accuracy after June of the monitored year. Crucially, the results 
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for black fallow have achieved a satisfactory level of performance at the end of the period, aligning 
well with the minimum expectations specified by NPA. 

 
Figure 13: Classifier F1 score Progress over Cultivation Period of 2022. Results are similar for 2023. 

In summary, our model provides probabilities for all available crop classes, and these probabilities sum 
up to 1. It's intuitive that higher probabilities correspond to higher accuracies, as expected. To quantify 
the difference between the most confident prediction and the second one, we can assess the likelihood 
of correctly identified cases. As illustrated in Figure 14, as this difference becomes more significant, 
accuracy gradually improves. However, it's important to note that this approach impacts the total 
number of cases predicted. Notably, for around 60% of the total cases, we observe a difference higher 
than 0.6, while only about 20% exhibit a difference higher than 0.9. This trade-off between the 
algorithm's accuracy level and the number of predicted cases is a critical factor that will guide our 
approach in interpreting the results. It serves as the foundation for providing the smart sampling 
service, which aims to pinpoint the most certain instances of incorrect farmer declarations. These 
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identified cases will be invaluable to end-users for strategically planning their field inspections and 
conducting thorough monitoring activities. 

 
Figure 14: Accuracy and Relative Support (i.e., number of cases above this threshold/ total number of cases) 

trade-off for different values of probability difference between the 2 first most confident predictions. 

Results Interpretability 
Tables 10 and 11 below depict the producer and user accuracy of the different cases respectively, as 
well as the loss of information among classes and how the model confuses them.  
 
The producer accuracy table (i.e., recall table) indicates the crop type distribution of the false negative 
instances, namely what crop types does the model predict when it makes a mistake, for each one of 
the different classes. For example, for the case of clover we can see that 73% of actual clover cases has 
been predicted mistakenly as grass. Clover and grass have very similar spectral signatures, but the 
latter has almost 30x more samples in the dataset, and thus the model reasonably struggles to identify 
the clovers. Similarly, all the winter cereals are confused them since they belong in the same group of 
cereals and present very similar characteristics. 
 
On the other hand, the user accuracy table (i.e., precision table) indicates the crop type distribution of 
the false positive instances, namely what is the ground truth of the predictions that the model makes 
a mistake. For instance, we can see that from the total predicted black fallow cases, 78% were indeed 
black fallows, while 7% were in fact grasslands. Interestingly, in the occasion of clover we see that, 
even though the algorithm can cannot distinguish clovers from grasslands as stated before, almost 
everything (98%) that has been predicted as clover, is indeed a clover. 
 
These confusion tables are really useful for results interpretability. It is obvious that the model 
performs better in terms of User’s Accuracy instead of Producer’s Accuracy, which means that the 
model can identify successfully the spectral behavior of almost all crop types. This is significant for the 
sub-sequent smart sampling algorithm, since it is based on the predictions and their level of confidence 
in order to highlight the respective alerts of false declarations. Overall, these results were calculated 
at the end of August of 2022, when NPA was needing to have the first results in order to start 
strategically planning their OTSC campaigns. Results for 2023 cultivation period were similar. 
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Table 10: Lithuania Producer Accuracy Table for 2022. Results for 2023 are similar. 

 

 

Table 11: Lithuania User Accuracy Table for 2022. Results for 2023 are similar. 

Crop Name 
Classified 

Parcels 
Well 

Classified 
User 

Accuracy 
Confusion 

Class 1 1% 
Confusion 

Class 2 2% 
Confusion 

Class 3 3% 
Rest 

% 

Beans 592 513 0,867 Grassland 0,02 Spring 
Barley 0,02 Green 

Fallow 0,02 0,07 

Crop Name 
Declared 
Parcels 

Well 
Classified 

Producer 
Accuracy 

Confusion 
Class 1 1% 

Confusion 
Class 2 2% 

Confusion 
Class 3 3% 

Rest 
% 

Beans 533 513 0,962 Oats 0,01 Peas 0,01 Spring 
Barley 

0,01 0,01 

Black 
Fallow 665 502 0,755 Grassland 0,12 Green 

Fallow 0,04 Potatoes 0,03 0,06 

Buckwheat 421 387 0,919 Grassland 0,04 Potatoes 0,01 Oats 0,01 0,02 

Clover 662 133 0,201 Grassland 0,73 Potatoes 0,02 Black 
Fallow 

0,02 0,04 

Corn 614 589 0,959 Potatoes 0,01 Buckwheat 0,01 Green 
Fallow 0,01 0,02 

Grassland 26861 26158 0,974 
Permanent 

Crops 0,01 Potatoes 0,01 
Winter 
Wheat 0 0,01 

Green 
Fallow 

977 624 0,639 Grassland 0,11 Oats 0,05 Buckwheat 0,04 0,16 

Lucerne 387 68 0,176 Grassland 0,8 Potatoes 0,01 Oats 0,01 0,02 

Oats 1844 1629 0,883 Grassland 0,02 
Spring 
Wheat 0,02 

Spring 
Barley 0,02 0,05 

Peas 840 751 0,894 Potatoes 0,03 Oats 0,02 Green 
Fallow 

0,02 0,04 

Permanent 
Crops 1317 596 0,453 Grassland 0,51 Potatoes 0,02 Black 

Fallow 0 0,02 

Potatoes 1051 885 0,842 Grassland 0,09 Peas 0,02 
Winter 
Wheat 0,01 0,04 

Protein 
Crops 

403 253 0,628 Oats 0,14 Grassland 0,1 Green 
Fallow 

0,05 0,09 

Spring 
Barley 1538 1195 0,777 Oats 0,08 Spring 

Wheat 0,06 Grassland 0,02 0,06 

Spring Rape 160 127 0,794 
Winter 
Rape 0,06 Peas 0,06 Buckwheat 0,04 0,04 

Spring 
Triticale 

179 105 0,587 Spring 
Wheat 

0,13 Oats 0,12 Spring 
Barley 

0,07 0,09 

Spring 
Wheat 1633 1376 0,843 Oats 0,06 Winter 

Wheat 0,02 Spring 
Barley 0,02 0,06 

Winter 
Barley 375 290 0,773 

Winter 
Wheat 0,12 Grassland 0,05 

Spring 
Barley 0,01 0,04 

Winter 
Rape 

1666 1610 0,966 Winter 
Wheat 

0,02 Grassland 0,01 Peas 0 0,01 

Winter Rye 579 495 0,855 Winter 
Wheat 0,06 Grassland 0,05 Winter 

Triticale 0,02 0,02 

Winter 
Triticale 1109 810 0,73 

Winter 
Wheat 0,19 Grassland 0,04 Winter Rye 0,01 0,03 

Winter 
Wheat 

7247 6775 0,935 Grassland 0,02 Winter 
Triticale 

0,02 Spring 
Wheat 

0 0,02 
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Black Fallow 641 502 0,783 Grassland 0,07 
Green 
Fallow 0,06 

Winter 
Wheat 0,02 0,07 

Buckwheat 496 387 0,78 Green 
Fallow 

0,08 Grassland 0,05 Spring 
Barley 

0,02 0,06 

Clover 136 133 0,978 Green 
Fallow 0,01 Grassland 0,01 Winter 

Wheat 0 0 

Corn 632 589 0,932 Grassland 0,02 Oats 0,01 Winter 
Wheat 

0,01 0,03 

Grassland 28348 26158 0,923 Permanen
t Crops 0,02 Clover 0,02 Lucerne 0,01 0,03 

Green 
Fallow 

830 624 0,752 Grassland 0,07 Black 
Fallow 

0,03 Oats 0,03 0,12 

Lucerne 73 68 0,932 Grassland 0,05 Clover 0,01 Winter 
Wheat 0 0 

Oats 2120 1629 0,768 
Spring 
Barley 0,06 

Spring 
Wheat 0,04 Grassland 0,03 0,1 

Peas 864 751 0,869 Green 
Fallow 0,03 Potatoes 0,03 Spring 

Rape 0,01 0,06 

Permanent 
Crops 813 596 0,733 Grassland 0,25 

Winter 
Wheat 0,01 Clover 0,01 0 

Potatoes 1264 885 0,7 Grassland 0,12 Oats 0,02 Winter 
Wheat 

0,02 0,14 

Protein 
Crops 262 253 0,966 Grassland 0,02 

Green 
Fallow 0,01 

Spring 
Barley 0 0 

Spring 
Barley 

1341 1195 0,891 Oats 0,02 Spring 
Wheat 

0,02 Winter 
Wheat 

0,01 0,05 

Spring Rape 133 127 0,955 
Green 
Fallow 0,04 

Winter 
Wheat 0,01 Peas 0 0 

Spring 
Triticale 

107 105 0,981 Spring 
Wheat 

0,01 Winter 
Triticale 

0,01 Winter 
Wheat 

0 0 

Spring 
Wheat 1601 1376 0,859 Spring 

Barley 0,05 Oats 0,03 Winter 
Wheat 0,02 0,04 

Winter 
Barley 

303 290 0,957 Winter 
Wheat 

0,03 Winter 
Rye 

0 Buckwhea
t 

0 0,01 

Winter Rape 1665 1610 0,967 Winter 
Wheat 0,01 Spring 

Rape 0,01 Grassland 0 0,01 

Winter Rye 528 495 0,938 
Winter 
Wheat 0,03 

Winter 
Triticale 0,02 

Green 
Fallow 0,01 0,01 

Winter 
Triticale 963 810 0,841 Winter 

Wheat 0,13 Winter 
Rye 0,01 Winter 

Barley 0,01 0,01 

Winter 
Wheat 7349 6775 0,922 

Winter 
Triticale 0,03 Grassland 0,01 

Winter 
Barley 0,01 0,03 

 
Towards smart sampling 
Throughout the entire cultivation period, we rely on prediction confidence levels to identify 
confidently declared cases that may be incorrect. Specifically, focusing on the last classification run 
conducted at the end of August, we find that more than 90% of mismatched cases predicted by the 
model are indeed wrongly declared cases by the farmers. Impressively, in 85% of these cases, the 
model accurately predicts the correct crop type. Furthermore, our methodology successfully identifies 
around 85% of all actual wrongly declared cases, demonstrating it’s high recall rate. The essence of the 
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smart sampling algorithm is grounded in the belief that the most confident model predictions reflect 
the truth. Therefore, if a prediction doesn't agree strongly with the true label, we consider it a wrongly 
declared case. 
 
In addition, alert cases are dynamically determined based on the probabilities associated with the 
results. We assess the level of alerts by considering the difference in the probabilities between the two 
most confident predictions (critical parameter a) and the total number of cases flagged as wrongly 
declared throughout the cultivation year (critical parameter b), also named as persistent 
misclassifications. This assessment is visualized using a traffic light system. For highrisk alerts (level 2 
and 3), these parameters are configured to characterize the estimated percentage of false declaration, 
which in BC of Lithuania is approximately 3%, based on former applicants declarations.   
 
In Figure 15, precision and recall are displayed for different percentages of disagreements among the 
total number of declarations. Misclassified (based on their initial declarations) instances are sorted 
inversely based on their confidence intervals between the two most confident classifier predictions. 
The optimal trade-off between precision and recall is achieved at roughly 5%, a bit higher to the 
expected number of false declarations. Parameter a is the confidence interval threshold used to 
identify the most confident disagreements. It's dynamically set to represent a ratio of 5% of the total 
instances, slightly exceeding the expected false declaration percentage. 
 

 
Figure 15: Evaluation of accuracy on high-risk disagreement vs the number of alert cases based on the 

confidence interval between two major predictions distribution (parameter a). 

Parameter b, termed "Persistence," represents the count of times a sample has been consistently 
misclassified in various classification iterations. This was set at a value of 2. 
 
In Figures 16 and 17 below, we illustrate the progress of precision and recall for high-risk alert cases 
(level 2 and 3) during the cultivation period for 2022 and 2023, respectively. Precision approaches 
near-perfect values early in the cultivation period, while the recall of false declarations reaches its peak 
at the end of the year. The rest of the actual wrongly declared cases have been either allocated in 
lower-risk alert cases or not detected at all. Figure 20 illustrates the distribution of actual wrongly 
declared cases categorized by the different alert levels generated by our system. 
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Figure 16: Progress of precision and recall of high-risk alert cases (level 2 and 3) during 2022. 

 
Figure 17: Progress of precision and recall of high-risk alert cases (level 2 and 3) during 2023. 

 
Figure 18: Portion of actual wrongly declared cases distribution among the various risk alerts output. 

In Figures 19 and 20, we provide visual representations of two parcels indicated as high-risk alerts on 
2022 to highlight the differences between the average NDVI behaviour of the declared crop type 
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(orange colour), the predicted crop type from the classifier (green colour), and the actual NDVI time 
series of the specific parcel (blue colour). These figures clearly show that in both cases, the curve of 
the sample and the average curve of the predicted crop type closely resemble each other. 
 

 
Figure 19: NDVI and S2 image of a case predicted as Winter Wheat and declared as Black Fallow. According to 

this plot, black fallows present lower values of NDVI during the cultivation period, which is definitely not 
evident here. 
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Figure 20: NDVI and S2 image of a case predicted as Winter Wheat and declared as Spring Wheat. According to 

this plot, spring wheat present raise of NDVI on late May. On the other hand, winter wheat presents a raise 
earlier during the cultivation period, which is more similar. 

Discussion and limitations 
 
The results demonstrate an exceptional level of accuracy, suggesting practical applicability. Through a 
semi-automatic approach (users can set their own confidence thresholds of acceptance), users can 
utilize the results and confidence levels provided as guidance for result extraction, facilitating the 
transition towards more target cases.  
 
In the context of the smart sampling scenario, we initially established strict confidence parameters to 
enhance precision, yielding only a limited number of cases with exceptionally high precision. However, 
as we progress towards an exhaustive monitoring scenario, it becomes necessary to relax these 
parameters. Doing so allows us to capture a greater number of alerts, with a primary objective of 
maximizing recall. 

1.3. DP3. Grassland Mowing Event Detection 

Product Description 
 
The Grassland Mowing Event Detection data product involves a two-step process, meticulously 
detailed in D3.3 and D3.7.  
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In the initial step, which focuses on reconstructing dense NDVI time series, we've undertaken a 
structured approach for both year of 2022 and 2023. Specifically, we've gathered pixel time series data 
from grassland parcels distributed within six predefined bounding boxes (i.e., study sites), strategically 
located across various regions of Lithuania (see Figure 21). This selection accounts for the diverse 
landscape characteristics present in these regions. The pixel time series have been methodically 
chosen to maximize the availability of cloud-free Sentinel-2 imagery, meaning they contain a minimal 
proportion of cloud coverage for better representation. This approach ensures a robust assessment of 
the capability of our S1/S2 fusion model in reconstructing NDVI over hidden timestamps within these 
time series. A numerical analysis on these samples is following in Table 12. 
 

 
Figure 21: Map of Lithuania. The boxes correspond to the relevant regions for evaluation of S1/S2 fusion model 

for NDVI reconstruction. 

Table 12: Numerical analysis of the samples time series collected for the validation of NDVI reconstruction for 
grasslands based on S1/S2 fusion model. 

 2022  2023  
# parcels # pixels Avg. parcel size (ha) # parcels # pixels Avg. parcel size (ha) 

Region 1 1211 116432 1.32 1317 198472 1.24 
Region 2 1021 121543 2.01 988 98323 2.26 
Region 3 1201 98065 1.68 1119 97156 1.66 
Region 4 754 55043 1.77 982 64973 1.69 
Region 5 712 58734 1.83 756 59004 1.89 
Region 6  543 33212 1.74 621 39821 2.01 
Total 5442 483029 1.70 5783 557749 1.74 

 
In addition, to fulfill the prerequisites for the subsequent mowing detection model, NPA provided a 
limited number of validation cases – specifically, 197 for 2022 and 133 for 2023. These cases include 
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both instances where grassland fields were in compliance with CAP regulations and cases where they 
were not. Moreover, they include significant information about the number and precise dates of the 
actual mowing events (if they performed) for both years. 
In order to enhance the quality of our assessment, NOA conducted an extensive photo-interpretation 
exercise involving more than 1000 grassland sample cases for both 2022 and 2023, utilizing NOA's data 
cube services as previously described. In this meticulous process, a blind photo-interpretation 
approach was employed, involving three independent experts. 
 
Here's how the process unfolded: Two experts independently analyzed random grassland samples 
throughout Lithuanian territory, with a particular focus on instances featuring minimal cloud coverage 
in the available Sentinel-2 imagery for more objective assessment. For each mowing event detection, 
these experts identified an approximate timeframe, taking into account the estimated starting and 
finishing dates of the event based on the corresponding Sentinel-2 image acquisitions (see example 
Figure 22). They also assessed their confidence in the detection and estimated the percentage of the 
mowed area. Subsequently, a third expert evaluated the results provided by the initial two experts, 
and decisions were made based on the most confident of their findings. Remarkably, a high level of 
agreement (95%) was achieved among the experts, reinforcing the reliability of the dataset. Overall, 
we concluded into a dataset comprising 2,308 grassland field instances for 2022 and 1,954 for 2023, 
homogeneously distributed across Lithuania (see Figure 23). Tables 13 and 14 contain a numerical 
analysis of the validation dataset samples based on the validation method collected and the number 
of annotated mowing events respectively. 
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Figure 22: Example of Sentinel-2 time series images for grassland mowing events annotation. An event has 

been performed between 8 and 18 of June. 

 
Figure 23: Grassland mowing samples geographical distribution across Lithuania territory. 

Table 13: Numerical analysis of the samples collected for the validation of DP3 services in Lithuania. 

 2022 
(NPA) 

2022 
(NOA) 

2022 
(Total) 

2023 
(NPA) 

2023 
(NOA) 

2023 
(Total) 

Μowing Event 
Detection 

197 2113 2310 133 1822 1955 

 

Table 14: Number of mowing events performed analysis. 

 2022  2023  
No evidence of mowing 

event 
321 326 

1 mowing event 1825 1553 
2 mowing events 101 55 

More than 2 mowing events 63 21 

 
Validation Results 
 
Data Fusion 
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To address the challenge of abrupt change detection in Lithuanian grasslands, where extensive cloud 
coverage frequently disrupts the continuity of Sentinel-2 optical imagery, we have employed a Deep 
Learning Architecture based on Recurrent Neural Networks (RNN). This architecture exploits Sentinel-
1 Synthetic Aperture Radar (SAR) data, which is independent of weather conditions, in combination 
with cloud-free Sentinel-2 data. Our objective is to take advantage of the consistent temporal 
information from Sentinel-1 at the pixel level and the temporal pattern-tracking capability of RNNs to 
generate continuous and dense NDVI time series. 
 
We evaluated the performance of our approach using random time steps for multiple pixel time series 
extracted from study sites (Region 1 to Region 6) during the years 2022 and 2023. In these evaluations, 
we deliberately concealed the actual NDVI values. The results, including Mean Absolute Error (MAE), 
Mean Squared Error (MSE), and Coefficient of Determination (R^2), are visualized in Figure 24, 
demonstrating the effectiveness of our S1/S2 fusion method. The methodology exhibits robust 
performance, with a mean MAE of 0.0258, mean MSE of 0.0015, and an R^2 value of 0.914. 
 

 
Figure 24: Scatter plot between the actual NDVI values and the SF predictions for all samples collected. 

Figure 25 displays scatter plots for the six study regions. Overall, a strong correlation between the 
ground truth and the SF prediction is evident. Region 5 and 6 stands out with the least favorable 
performance, marked by an average error of 0.029 and 0.031, respectively. Nevertheless, there are no 
notable performance discrepancies among the other regions. 
 



 
 

38 
 The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

 
Figure 25: Scatter plots between the actual NDVI values and the SF predictions for each study region. 

Figure 26 provides insight into the average and standard deviation of MAE and the average magnitude 
of NDVI drops on each inference date. Notably, abrupt NDVI reductions are a common occurrence 
from early June to mid-August, suggesting the possibility of mowing or grazing activities in Lithuanian 
grasslands during the summer season. Predicting these sharp NDVI declines poses a greater challenge, 
resulting in a relatively lower performance of the SF model in such instances. 
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Figure 26: The upper bar plot displays the distro of NDVI drops, while the lower box plot shows the relevant 

values of MAE distribution on each inference date. 

In Figure 27, we evaluate the model's performance under varying cloud coverage conditions (i.e., 
number of cloudy observations out of to the total number of available observaitons). The analysis of 
the results across different cloud coverage scenarios reveals that when cloud coverage is less than 
50%, the SF model achieves a MAE of 0.025. However, as the number of cloudy timestamps in the time 
series increases, the MAE also shows an upward trend. More specifically, when comparing errors 
between the lowest and highest cloud coverage in the time series, there is an increase of 0.02 (rising 
from 0.02 to 0.04) in the mean error, while the standard deviation remains consistently around 0.015 
for the SF model. This demonstrates the SF model's robustness. 
 
In regions with substantial cloud coverage, extended gaps in Sentinel-2 data acquisitions can occur, 
sometimes lasting for months. While most interpolation methods are effective for short-term data 
gaps, which are more common, their reliability diminishes as the gaps become larger. 
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Figure 27: The upper histogram shows the frequency of each cloud coverage scenario while the low box plot 

shows a comparison of the MAE for the different cloud coverage scenarios. 

Furthermore, when examining the distribution of MAE for varying lengths of consecutive missing 
values in Figure 28, it becomes evident that the SF model consistently produces stable results, even in 
cases where there are ten consecutive missing NDVI images. In the most challenging situations, the SF 
model maintains an average MAE of around 0.025, with a minimal standard deviation. As expected, 
less favorable results are observed in cases with gaps exceeding 7-8 timestamps (more than a month), 
often associated with significant NDVI reductions related to activities like mowing or grazing. 
Nevertheless, our method effectively reconstructs NDVI curves in many instances, as in example Figure 
29. This figure illustrates a mean parcel time series constructed from initial NDVI inputs, where 
timestamps associated to the mowing event are hidden. The SF model effectively captures and 
highlights events that may not be apparent when using baseline interpolation methods. 
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Figure 28: The upper histogram shows the frequency of the number of consecutive missing values in the 

grasslands' NDVI time series while the low box plot shows a comparison of the MAE for the different number of 
consecutive missing values (gap size). 

 
Figure 29: NDVI reconstruction example related to a hidden mowing event. Stars show input NDVI values, the 

blue line represents the SF predictions, and the red line shows the actual. Green line shows the results 
predicted used linear interpolation based on star inputs. 

Grassland Mowing Event Detection 
We have developed a deep learning architecture for detecting mowing events. This model uses an RNN 
to analyze time series data comprising newly generated NDVI values and corresponding S1 backscatter 
coefficients. The aim is to pinpoint the 6-day window (see example Figure 30 below) during which a 
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mowing event occurred. By applying relevant mowing regulations based on the grassland type, we can 
deduce whether a mowing event took place, typically before the end of August. This analysis can help 
assess farmers' compliance. 
 

  
Figure 30: Mowing Event Detected as result of sudden NDVI drop. 

The model's performance with a total accuracy approximately of 98% for both years, as demonstrated 
in Table 15, which showcases its recall and precision for both mowed and non-mowed cases. The 
results indicate that the model effectively addresses scenarios involving compliant and non-compliant 
farmers. 
 
Furthermore, Table 16 offers a more detailed analysis by categorizing the total number of events. This 
fine-grained examination reveals the model's adaptability across various event scenarios. It's worth 
noting a slight decline in performance when dealing with more than two total events. Nevertheless, 
this minor decrease doesn't impact the ultimate determination of a farmer's compliance. The model 
only needs to identify at least one event to make this assessment. 
 

Table 15: Analysis on recall, precision and support of the mowing event detection analyzed for mowed or not 
mowed cases. 

Cultivation Period 2022  2023  
Condition Precision Recall Support Precision Recall Support 

Non-mowed 0.987 0.941 321 0.985 0.988 326 
Mowed 0.976 0.983 1989 0.986 0.999 1629 
Total Accuracy 0.977 2310 0.986 1955 

 

Table 16: Analysis on recall, precision and support of the mowing event detection analyzed for the different 
number of total mowing events performed. 

Cultivation Period 2022  2023  
Dataset Condition Precision Recall 

 
Support Precision Recall 

 
Support 

NPA 
 
 

No Evidence 
of Mowing 
Events 

0.941 0.842 19 0.800 0.727 11 
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1 Mowing 
Event 

0.925 0.980 152 0.953 0.990 102 

2 Mowing 
Events 

0.875 0.636 22 0.706 0.600 20 

More than 2 
Mowing 
Events 

1.000 0.750 4 - - 0 

NOA 
 
 

No Evidence 
of Mowing 
Events 

0.990 0.947 302 0.991 0.997 315 

1 Mowing 
Event 

0.989 0.998 1673 0.995 0.999 1451 

2 Mowing 
Events 

0.877 0.899 79 0.969 0.886 35 

More than 2 
Mowing 
Events 

0.907 0.831 59 0.813 0.619 21 

 
Furthermore, in Figure 31, the scatter plot reveals a strong correlation between predicted and 
reference dates, which are expressed in Days of the Year. The high coefficient of determination (R^2 = 
0.95) and low Mean Absolute Error (MAE of 2.58 days) indicate the model's ability to accurately identify 
mowing events. Specifically, the majority of mowing events fall within a 12-day range, equivalent to 
the time gap between two consecutive Sentinel acquisitions. This proximity is primarily attributed to 
the subsequent time shifting of the new exported NDVI measurements, as previously described in the 
data fusion process. 
 

 
Figure 31: Reference day of the year (DOY) for the mowing events and the DOY predicted by the model. 

Evaluating the impact of cloud coverage on the model's performance is essential. As highlighted in the 
data fusion section, mowing events can be obscured by extended cloud cover, potentially leading to 
inaccurate notifications of farmer non-compliance. In Figure 32, we examine the model's robustness 
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across varying levels of cloud coverage. The results demonstrate that our model's performance 
remains consistent, even in the presence of extensive cloud coverage. The proportion of accurately 
identified mowing cases remains stable, even in the most extreme scenarios. This robustness signifies 
that our model can effectively handle cloud-related challenges, ensuring reliable results for users, 
regardless of cloud conditions. 

 
Figure 32: Recall performance on different cloud coverage scenarios. Cloud coverage is calculated as the ratio 

of total cloudy timestamps to the total number of timestamps available. 

Additionally, parcel size is a potentially crucial factor to consider in our analysis As described in D3.7, 
results are provided initially, on each pixel individually and aggregated statistics is used to provide us 
with a representative level of confidence regarding the extent and the exact time instance that a 
mowing event took place for each parcel. Figure 33 illustrates the model's capability to correctly 
identify actual events based on different parcel sizes. Notably, the model's performance remains 
consistently stable across all scenarios, yielding optimal results, especially in cases with larger parcels. 
This stable performance across varying parcel sizes aligns with our expectations, as the total number 
of the available pixels becomes higher. 
 

 
Figure 33: Recall performance on different parcel size scenarios. Area is calculated in herctares. 

Lighthouse Customers: Case of Flanders 
The grassland mowing event detection algorithm was developed and applied in a pilot sub-area of 
Flanders for the 2022 growing season for 107,726 total cases, using GSAA farmer's declarations 
provided by LV. Since there were no training labels available for mowing events, the methodology 
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involved a data fusion step for NDVI reconstruction and a subsequent threshold-based event detection 
approach, as detailed in BC.1. of D3.7. 
 
In the initial phase, where the primary focus was on reconstructing dense NDVI time series, we 
followed a structured approach similar to the one used in Lithuania. This involved transfer learning, 
where we fine-tuned a pre-existing model on the NDVI time series data from two evaluation regions 
within Flanders (see Figure 34). 
 

 
Figure 34: “Grassland Mowing Event Detection” product applied for the area of Flanders (pink layer) in Belgium 
for 2022. Test areas are extracted from two evaluation sites, Region 1 (yellow colour) and Region 2 (red colour). 

Figure 35 displays scatter plots for the two study regions. Overall, a strong correlation between the 
ground truth and the SF prediction is evident, similar to Lithuanian standards.  

 
Figure 35: Scatter plots between the actual NDVI values and the SF predictions for the two study regions in 

Flanders. 

To assess mowing event detection in Flanders, NOA conducted a photo-interpretation evaluation since 
LV did not provide their own validations. NOA's evaluation included 1448 sample grassland cases from 
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the two regions, utilizing again NOA's data cube services. This meticulous process employed a blind 
photo-interpretation approach, involving three independent experts, similar to the approach used in 
Lithuania. The results of this evaluation are summarized in Table 17 for the two regions, respectively. 
 

Table 17: Analysis on recall, precision and support of the mowing event detection analyzed for the two study 
regions. 

Region Region 1 Region 2 

Condition Precision Recall 
 

Support Precision 
 

Recall 
 

Support 

 
No Evidence of 
Mowing Events 
 

0.922 0.884 121 0.937 0.908 98 

1 Mowing Event 
 0.959 0.972 386 0.921 0.930 302 

2 Mowing Events 
 0.936 0.940 248 0.910 0.922 231 

More than 2 
Mowing Events 0.818 0.783 23 0.778 0.718 39 

Total Accuracy 0.942 778 0.912 670 

The results in Flanders are comparable to those in Lithuania, although slightly less favorable. It's worth 
noting that the accuracy of the results could potentially be improved by providing training labels for 
mowing events. However, generating a critical sample of over 10,000 cases (as expected) for such 
training is a time-consuming process. The threshold-based routine relies on predefined NDVI 
thresholds, and Table 18 showcases the top five accuracy scores achieved for the two regions using 
these specific threshold values. 
 

Table 18: Top-5 set of parameters for threshold-based mowing event detection in Flanders. 

set NDVI_th NDVI_r 
Accuracy – 
Region 1 

 (%) 

Accuracy – 
Region 2 

 (%) 
1 -0.08 0.001 94.2 91.2 
2 -0.10 0.001 94.4 89.9 
3 -0.12 0.001 91.9 90.8 
4 -0.08 0.005 88.7 89.1 
5 -0.06 0.001 88.7 86.3 
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Discussion and limitations 
 
The Grassland Mowing Detection product in Lithuania has demonstrated remarkable performance and 
robustness in monitoring grasslands. The algorithm displays notable sensitivity to critical bottleneck 
factors like parcel size and cloud cover, showcasing a full automisation and adaptability across diverse 
parcel sizes and resilience in dealing with varying cloud coverage conditions. 
 
The anomaly related to Sentinel-1B, which led to reduced SAR temporal resolution for 6 to 12 days, is 
expected to have some impact. Nevertheless, the algorithm's outstanding performance suggests that 
the effect may be less severe than initially anticipated (also discussed in D3.7). 
 
However, certain limitations should be considered. Extensive training data is essential (especially for 
the part of NDVI reconstruction using the S1/S2 Fusion model), and implementing the algorithm at a 
national scale demands substantial computational resources, especially with a pixel-based approach. 
It's vital to be cautious though, when working with exceptionally large training datasets, as they can 
increase the risk of overfitting. To mitigate the risk of absence of training data, we propose employing 
threshold-based approaches, similar to SEN4CAP project, sufficiently implemented for the lighthouse 
customer case of Flanders. To address the computational challenges, we recommend adopting a pixel-
based approach only for small parcels (e.g., less than 1 hectare), which is critical for algorithm 
precision. For larger parcels, an approach utilizing average time-series data can be employed, 
optimizing computational efficiency while maintaining accuracy.  

2. BC2: Monitoring multiple environmental and climate requirements of CAP 

– Cyprus 

This section outlines the validation dataset in order to evaluate the outputs provided by the respective 
data products (DP1 and DP2) applied in case of Cyprus (BC2). Detailed information on the methodology 
of the respective algorithms developed is provided in D3.7. 

2.1. DP1. Analytics on Vegetation and Soil-Index Time-series 

This data product is designed to analyze time-series data related to vegetation and soil indices in 
Lithuania. It offers several algorithmic components: 
 
• Minimum Soil Cover for Soil Erosion: This feature provides data on soil percentage and minimum 

soil cover, which helps assess the risk of soil erosion in different regions of Cyprus, particularly in 
agricultural areas. It can assist in making informed land management decisions to prevent soil 
erosion. 

• Runoff Risk Assessment for the Reduction of Water Pollution in Nitrate Vulnerable Areas: This 
component assesses the risk of runoff and water pollution in nitrate vulnerable areas of Cyprus. It 
can be valuable in managing and mitigating water pollution, especially in regions with intense 
agricultural activities. 
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• Detection of illegal land clearing in Natura2000 protection areas: This feature is designed to 
identify unauthorized agricultural activities within Natura 2000 regions, ensuring the preservation 
of their ecological integrity and facilitating the monitoring of potential violations. 

• Stubble Burning Identification: This component is designed to detect and identify instances of 
stubble burning, which can be a concern for air quality and environmental impact. It can help 
monitor and enforce regulations related to stubble burning practices. 

 
Sampling Description 
 
Minimum oil cover for soil erosion 
This service promotes the adoption of minimum soil cover practices to prevent erosion. The algorithm 
assesses soil percentages on areas with slopes exceeding 10%, similar to the approach used in 
Lithuania. To evaluate its effectiveness, NOA conducted photo-interpretations for the years 2022 and 
2023, during which the module was applied. These assessments involved a thorough examination of 
cloud-free Sentinel-2 images using Creodias' datacube services, prior to the main cultivation season 
(until March). These instances were evenly distributed across Cyprus, guided by the system's alerts, 
and covered 1479 out of 21761 cases with slopes greater than 10% in 2022. In 2023, a total of 1346 
alerts for minimum soil cover violations were identified out of 21853 cases with slopes exceeding 10% 
(see Figure 39). 
 
Runoff risk assessment for the reduction of water pollution in nitrate vulnerable areas 
Under CAP regulations, it is imperative to avoid the application of manure and/or slurry in the coastal 
protection zones around water bodies as delineated in the Surface Water Protection Zone layer. In 
response, we have devised a runoff risk assessment procedure that considers the proximity of each 
agricultural parcel to the nearest water surfaces inside Nitrate Vulnerable zones. Our assessment relies 
on data sourced from Cyprus hydrographic network and nitrate vulnerable areas, generously provided 
by the CAPO, as illustrated in Figure 36. The service was deployed for the whole Cyprus for the year 
2022.  
 
Additionally, it's worth mentioning that the output generated for this service is of a qualitative nature. 
In other words, our validation process primarily focuses on qualitative assessments rather than 
quantitative metrics due to the inherently conductive nature of the service. This is a risk assessment; 
as such it cannot be measured directly for the respective paying agencies. Overall, this approach 
ensures that we maintain a high level of compliance with CAP regulations in the pilot area while 
providing valuable insights into the effectiveness of our runoff risk assessment procedure. 
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Figure 36: Hydrographic network of Cyprus (yellow colour) and Nitrate Vulnerable Areas (purple colour). 

Stubble burning identification on arable land 
The identification of stubble burning serves the specific purpose of meeting CAP requirements related 
to the burning of agricultural residues, as illustrated in example Figure 37 below. However, CAPO did 
not provide us with validation data for burn parcels in recent years. To overcome this limitation, we 
resorted to optical methods, employing photo-interpretation with datacube services. During this 
process, we closely examined a manageable total of 220 cases of indicated burning in 2022 and 295 
cases in 2023 (see Figure 39). Our team meticulously reviewed these instances, relying on available 
Sentinel-2 images to determine whether stubble burning had indeed taken place. This additional step 
became necessary due to the absence of customary validation data. 
 

 
Figure 37: Example case of stubble burning in arable crops in Cyprus. 

Detection of illegal land clearing in Natura2000 protection areas 
Natura 2000 is a protected area network in the European Union aimed at preserving Europe's 
endangered species and habitats. In Cyprus, agricultural activity is generally prohibited within these 
areas (see Figure 38), except with special permission.  To detect intense activity within Natura 2000 
regions, a pixel-based routine has been developed that evaluates several vegetation and soil indices. 
To ensure policy compliance, Eligible Agricultural Areas from the LPIS are excluded from the analysis 
within Natura 2000 sites. This helps distinguish authorized interventions from potentially unauthorized 
ones.  
 
It's worth mentioning that the output generated for this service is of a qualitative nature. In other 
words, our validation process primarily focuses on qualitative assessments rather than quantitative 
metrics due to the inherently conductive nature of the service. 
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Figure 38: Natura 2000 network sites in Cyprus. 

 
Figure 39: Alert cases for Minimum Soil Cover and Stubble Burning across Cyprus for DP1. 

Validation Results 
 
Minimum soil cover for soil erosion 
The minimum soil cover detection algorithm was applied in both the 2022 and 2023 cultivation periods 
for parcels with slopes over 10%. A binary mask is created based on the following conditions, as 
outlined in D3.7: 
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i. 𝑛𝑑𝑣𝑖	𝑙𝑜𝑤𝑒𝑟 <  𝑛𝑑𝑣𝑖  <  𝑛𝑑𝑣𝑖	𝑢𝑝𝑝𝑒𝑟   
ii. 𝑠𝑎𝑣𝑖	𝑙𝑜𝑤𝑒𝑟  <  𝑠𝑎𝑣𝑖  <  𝑠𝑎𝑣𝑖	𝑢𝑝𝑝𝑒𝑟 

iii. 𝐵2 − 𝐵1  >  (𝐵2 − 𝐵1)	𝑙𝑜𝑤𝑒𝑟 
iv. 𝐵3 − 𝐵2  >  (𝐵3 − 𝐵2)	𝑙𝑜𝑤𝑒𝑟 

v. 𝑁𝐵𝑅2  <  𝑁𝐵𝑅2	𝑢𝑝𝑝𝑒𝑟  
 
To classify an area as bare ground from satellite observations, a minimum of percentage of clear pixels 
must indicate the presence of soil, even if vegetation is still present. Table 19 displays the top-5 
threshold parameter combinations in descending order based on precision accuracy. By using the best 
combination, we achieved an accuracy of 88.9% for 2022 and 83.2% for 2023. 
 

Table 19: Top-5 set of parameters for minimum soil cover in for 2022 and 2023. 

 NDVI 
LOWER 

NDVI 
UPPER 

SAVI 
LOWER 

SAVI 
UPPER B2-B1 B3-B2 NBR2 

CLEAR 
PIXELS 

(%) 

PRECISION 
2022 

PRECISION 
2023 

1 0 0.25 0 0.35 0 0 0.4 20 88.9 83.2 

2 0 0.3 0 0.35 0 0 0.4 20 86.3 82.1 

3 0 0.25 0 0.4 0 0 0.35 20 86.1 82.0 

4 0 0.25 0 0.3 0 0 0.35 20 82.0 79.9 

5 0 0.15 0 0.3 0 0 0.35 20 77.4 78.9 

 
Run-off Risk Assessment 
The run off risk assessment algorithm takes into account the parcel’s proximity to water surfaces.  The 
methodology here is the exact same with BC of Lithuania. By taking into consideration the values of 
water proximity and RUSLE, runoff risk has been computed for each parcel. A numerical description of 
the results is presented in Table 20. In addition, Figure 40 depicts the visualization of the parcels along 
with their categories and the water surfaces around them. Both layers’ data is directly retrieved from 
the ENVISION database.  

Table 20: Run-off Risk Assessment Results. 

 Very Low 
or Low Risk 

Moderate Risk Very High or 
High Risk 

Algorithm 43562 40834 1035 
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Figure 40: Visualization of the run-off risk for a subset of parcels along with the water surfaces around them. 

Stubble Burning Identification 
The algorithm was used for both the 2022 and 2023 cultivation periods. Following a quality assessment 
using Sentinel-2 imagery, an exceptional level of accuracy was achieved: 91.9% for 2022 and 94.2% for 
2023. Notably, a significant portion of the detected cases can be attributed to wildfires, that were 
relatively easy to be identified. 
 
Table 21 lists the top-5 threshold parameter combinations derived from various vegetation and soil 
indices, ordered by precision accuracy. Furthermore, an illustrative example of stubble burning 
detected by the algorithm is provided in Figure 41. 
 

Table 21: Top-5 set of parameters for stubble burning for 2022 and 2023. 

 NBR 
UPPER 

SAVI 
UPPER 

NDMI 
UPPER 

PSRI 
UPPER 

NDWI 
LOWER 

BSI 
LOWER 

PRECISION 
2022 

PRECISION 
2023 

1 -0.05 0.15 -0.05 0.25 -0.25 0.1 91.9 94.2 

2 -0.05 0.15 -0.1 0.25 -0.25 0.05 85.5 90.7 

3 -0.1 0.15 -0.05 0.25 -0.2 0.05 84.7 88.9 

4 -0.1 0.2 -0.05 0.25 -0.2 0.05 80.6 85.1 

5 -0.05 0.15 -0.1 0.25 -0.2 0.1 80.6 83.8 
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Figure 41: Visual representation of stubble burning event successfully identified by the algorithm between 30 

June and 2 July. 

Detection of illegal land clearing in Natura2000 protection areas 
The Natura 2000 Hotspot Detection algorithm employs a threshold-based approach, as described in 
D3.7. While the absence of validation data limits precise evaluation, our manual inspection of 
predictions via photointerpretation reveals strong performance in identifying relevant cases. However, 
the majority of the detected events require further evaluation through CAPO's verification 
mechanisms, including both authorized and unauthorized activities within Natura 2000 regions. 

 

Figure 42: An example of an area where illegal land clearing occurred in 2022 and correctly identified from the 
algorithm, depicting the situation before and after the illegal clearing. 

It's worth noting that we utilize the same methodology as the Lithuanian BC (BC1) for detecting harvest 
events at the level of pixel, integrating the analysis of various vegetation and soil indices (e.g., NDVI, 
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NDMI, PSRI, and BSI) over time. In Table 22, we present the selected parameters aimed at achieving 
results of high quality, minimizing the inclusion of noisy false alerts (primarily caused by seasonal 
vegetation changes) while capturing a substantial number of genuine alert cases. The final output (see 
Figure 43) serves as an advisory tool to assist control authorities in identifying potential illegal 
activities. 
Table 22: Critical parameters used for Detection of illegal land clearing in Natura2000 protection areas in 2022 

and 2023. 

 NDVI NDMI PSRI BSI 

1 0.15 0.2 0.1 -0.1 

 

 
Figure 43: Cyprus Natura2000 Alert Pixels Detected example for 2022. The identification of alert pixels, signals 

potential instances of unauthorized clearing activities. 

Discussion and limitations 
 
The algorithmic components within DP1 exhibit satisfactory overall accuracy, making them suitable for 
integration into in-house infrastructures. Notably, the Stubble Burning and Minimum Soil Cover 
detection algorithms display the best performance. 
 
However, it is crucial to acknowledge certain limitations. 
 
First, the evaluation of Stubble Burning and Minimum Soil Cover relied on qualitative assessment 
through NOA's photo-interpretation. CAPO experts provided only a qualitative picture of the outcomes 
as they are using them for their current operation, already from 2022. The guidance by the algorithms 
outcomes was satisfactory according to their declaration 
 
The Run-off Risk Assessment for Water Pollution Reduction in Nitrate Vulnerable Areas evaluation is 
qualitative as it operates as a risk assessment algorithm. It identifies high-risk areas based on proximity 
to water bodies and soil characteristics. Water pollution is primarily influenced by farming practices, 
and quantitative measurements are not feasible within this framework. Nevertheless, it can guide 
control bodies on the strategic monitoring of farming practices and regulatory compliance. 
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Finally, the evaluation of the Detection of illegal land clearing in Natura 2000 protection areas 
algorithm relied solely on qualitative photo interpretations by NOA. This pixel-based algorithm was 
exhaustively applied to all Natura2000 zones and fine-tuned accordingly to reduce false-positive 
indications through parameter configuration. Additionally, to mitigate further noise from the intense 
variation of the vegetation in large forestry regions, the analysis concentrated on assessing only the 
boundaries of these areas, reducing the impact on intensive activity detection. The final assessment of 
detected cases requires further verification by CAPO to distinguish authorized from unauthorized 
activities within Natura 2000 regions. Nonetheless, the algorithm successfully identified multiple 
instances of illegal activity. 
 
All in all, the modules mentioned rely on manually optimized parameters to operate effectively. These 
parameters, often fine-tuned through human expertise, are crucial in influencing the modules' 
behavior and performance. Through careful adjustments, operators can enhance the modules' 
capabilities. While manual optimization can be a time-intensive process, it plays a significant role in 
achieving desired outcomes for the implementation of the respective services to other regions. This 
human touch, guided by experience and domain knowledge, can lead to finely tuned systems that 
operate with precision and efficiency. 

2.2. DP2. Cultivated Crop Type Maps (CCTM) 

Product Description 
 
To evaluate the cultivated crop type maps produced, we employ a rigorous validation dataset supplied 
by CAPO. This dataset comprises 12,681 instances for 2022 and 4,563 for 2023, gathered nationwide 
during ENVISION deployment.  The dataset is meticulously curated to ensure a diverse representation 
of crop types (see Figure 44). It combines two methods: utilizing Sentinel-2 satellite data for remote 
sensing and expert on-site field visits for validation. These samples encompass varying field sizes, 
covering diverse farming landscapes and uniformly distributed samples across Cyprus (see Figure 47).  
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Figure 44: Crops distribution of validation samples for CCTM for 2022 and 2023. 
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Figure 45: Number of available OTSC and RS validation for both operational year. 

 

Figure 46: Distribution of parcel size of the CCTM validation. Area is calculated in hectares (ha). 

 
Figure 47: Validation samples geographical distribution across Cyprus territory for CCTM DP. 
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Validation Results 
 
Crops Classification Results Performance 
As outlined in D3.3 and D3.7, we generate multiple crop type maps from mid October of the previous 
year, until May of the current year. Model accuracy improves as more data accumulates, peaking it’s 
optimal performance by the end of May. 
 
Table 23 presents validation results for different machine learning models in early June for both 2022 
and 2023. Notably, the Random Forest model outperforms others in accuracy and processing time. 
 
Table 23: Classification performance for different machine learning models based on the predictions provided 

at the early June for 2022 and 2023. 

 2022 2023 
 RF SVM XGBoost MLP RF SVM XGBoost MLP 

Recall (Macro Avg.) 0.83 0.71 0.81 0.73 0.83 0.71 0.82 0.72 
Recall (Weighted Avg.) 0.83 0.70 0.81 0.74 0.84 0.71 0.82 0.74 
Precision (Macro Avg.) 0.90 0.82 0.87 0.86 0.90 0.83 0.88 0.86 
Precision (Weighted 
Avg.) 

0.83 0.74 0.80 0.78 0.84 0.74 0.81 0.79 

F1-Score (Macro Avg.) 0.86 0.77 0.84 0.80 0.85 0.77 0.85 0.81 
F1-Score (Weighted Avg.) 0.83 0.74 0.82 0.77 0.84 0.74 0.83 0.77 
Overall Accuracy 0.83 0.74 0.81 0.78 0.84 0.73 0.82 0.79 
Kappa Coeff. 0.80 0.71 0.77 0.73 0.81 0.71 0.78 0.74 
Elapsed Time (min.) 2.1 10.1 6.6 2.3 0.9 6.9 3.1 0.9 

 
Table 24 presents a classification report for 30 crop classes, representing a snapshot of the model's 
performance in early June during the cultivation periods of 2022 and 2023. 
 
The classifier exhibits strong accuracy across most crop classes, though challenges arise for mixed 
vegetable classes, characterized by their blended features. Overall, the model consistently achieves an 
accuracy above 80% in both years. Notably, the model tends to prioritize precision over recall, a factor 
that can aid regulatory bodies in ensuring accurate declarations and inspect potential cases of false 
declarations. 
 

Table 24: Classification Report based on the predictions provided at the early June for 2022 and 2023. 

 2022 2023 
 Precision Recall F1-Score Support Precision Recall F1-Score Support 

ALFALFA 0.83 0.77 0.80 13 0,50 0,67 0,57 3 
BANANAS 1.00 0.93 0.96 28 1,00 1,00 1,00 13 
BARLEY 0.79 0.85 0.82 2791 0,79 0,86 0,82 982 
BLACK-EYED PEA 0.96 0.86 0.91 28 1,00 0,63 0,77 8 
CAROB TREES 0.99 0.83 0.90 82 1,00 0,82 0,90 28 
CITRUS TREES 0.93 0.85 0.89 345 0,98 0,85 0,91 131 
CLOVER 0.63 0.96 0.76 23 0,62 1,00 0,76 8 
CUCUMBERS 0.93 1.00 0.96 13 1,00 1,00 1,00 2 
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DECIDUOUS 
FRUIT TREES 0.90 0.82 0.86 523 0,86 0,87 0,86 171 

FIGS 1.00 0.74 0.85 19 1,00 0,71 0,83 7 
LAND LYING 
FALLOW 0.82 0.74 0.78 1944 0,82 0,74 0,78 698 

LOLIUM 1.00 0.82 0.90 34 0,83 0,83 0,83 6 
MELON 0.94 0.77 0.85 22 1,00 0,40 0,57 5 
OAT 0.94 0.83 0.88 253 0,94 0,89 0,92 112 
OLIVES 0.81 0.86 0.84 1405 0,86 0,85 0,85 503 
ONIONS 0.96 0.81 0.88 31 1,00 0,84 0,91 19 
ORCHARD 1.00 0.77 0.87 212 1,00 0,77 0,87 75 
PEAS 1.00 0.86 0.92 71 1,00 0,67 0,80 24 
PERMANENT 
GRASSLAND 0.87 0.94 0.90 196 0,87 0,89 0,88 66 

POTATOES 0.73 0.87 0.79 200 0,81 0,95 0,87 76 
SHRUB TREES 1.00 0.80 0.88 10 1,00 1,00 1,00 5 
TOMATOES 0.89 0.82 0.85 50 0,79 0,85 0,81 13 
TRADITIONAL 
TREES 0.91 0.80 0.85 293 0,98 0,86 0,92 107 

TRITICALE 0.72 0.81 0.76 412 0,78 0,87 0,82 163 
VARIOUS 
VEGETABLES 0.96 0.52 0.68 197 0,98 0,66 0,79 59 

VICIA 0.95 0.83 0.89 266 0,99 0,80 0,88 95 
VINES 0.89 0.93 0.91 752 0,92 0,92 0,92 268 
WALNUTS 1.00 0.81 0.89 21 1,00 0,91 0,95 11 
WATERMELON 1.00 0.85 0.92 40 0,93 0,81 0,87 16 
WHEAT 0.79 0.83 0.81 2407 0,80 0,86 0,83 889 
Macro Avg. 0.90 0.83 0.86 

12681 
0.90 0.83 0.85 

4563 Weighted Avg. 0.83 0.83 0.83 0.84 0.84 0.84 
Overall Accuracy 0.83 0.84 
Kappa Coeff. 0.80 0.81 

 
The results show a clear improvement as the cultivation period advances (refer to Figure 48). This 
enhancement is primarily attributed to the growing clarity of spectral characteristics, facilitating more 
precise discrimination among various crop types. Remarkably, cereals (i.e., Barley, Wheat etc.) and the 
rest of arable cultivations (e.g., vegetables, vicia crops, etc.) notably enhance their accuracy after mid-
January in the observed year. Of particular importance is the satisfactory performance achieved for 



 
 

60 
 The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

miscellaneous case of land lying fallow, aligning with CAPO's specified minimum expectations.

 
Figure 48: Classifier F1 score Progress over Cultivation Period of 2022. Results are similar for 2023. 

Furthermore, our results reveal that the model's performance is minimally impacted by the size of the 
parcels (see Figure 49). As detailed in D3.7, the methodology operates at the pixel level for cases with 
less than 10 clear pixels (where results are subsequently aggregated at the parcel level through 
majority voting). These cases are excluded from the model's training. Consequently, as long as even a 
single pixel (equivalent to approximately 0.01 hectares) remains within a 5-meter inward buffer, 
results can be derived. As anticipated, performance tends to improve for larger parcels. This suggests 
that parcel size has limited influence on the model's accuracy, reinforcing the methodology's 
robustness. 

 
Figure 49: Classifier overall Accuracy and Kappa score for different parcel size (in hectares). 

In summary, our model assigns probabilities to all available crop classes, with these probabilities 
summing up to 1. It's logical that higher probabilities correspond to higher accuracies, as expected. To 
gauge the accuracy difference between the most confident prediction and the second one, we can 
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evaluate the likelihood of correctly identified cases, as shown in Figure 50. As this difference becomes 
more substantial, accuracy gradually improves. 
 
However, it's crucial to recognize that this approach affects the total number of predicted cases. 
Notably, about 60% of the total cases exhibit a difference higher than 0.2, while only approximately 
20% show a difference higher than 0.5. This trade-off between algorithm accuracy and the number of 
predicted cases is pivotal in shaping our approach to interpreting results. It forms the basis for our 
smart sampling service, which aims to pinpoint the most certain instances of incorrect farmer 
declarations. These identified cases will be invaluable to end-users for strategic field inspections and 
comprehensive monitoring activities. 

 
Figure 50: Accuracy and Relative Support (i.e., number of cases above this threshold/ total number of cases) 

trade-off for different values of probability difference between the 2 first most confident predictions. 

Results Interpretability 
Tables 25 and 26, displayed below, present producer and user accuracy data, respectively, along with 
information loss and confusion matrices that shed light on the model's misclassifications. The producer 
accuracy table, unveils the crop types mistakenly predicted by the model for false negatives, 
illuminating the taxonomy relationships. For instance, it reveals that 15% of actual vegetable instances 
were erroneously predicted as potatoes, given their similar taxonomy. Likewise, cereals are often 
confused due to shared characteristics. Conversely, the user accuracy table, discloses the actual 
ground truth for false positive predictions made by the model. In many cases, the model correctly 
predicts nearly all instances. 
 
These confusion matrices offer invaluable insights for result interpretation. Notably, the model excels 
in User's Accuracy, suggesting its ability to successfully discern the spectral behaviors of various crop 
types. This holds significant implications for the subsequent smart sampling algorithm, which relies on 
predictions and their confidence levels to pinpoint false declarations. These results were computed at 
the start of June 2022, enabling CAPO to strategically plan their OTSC campaigns. The 2023 results 
exhibited a similar pattern, reinforcing the model's robust performance. 
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Table 25: Cyprus Producer Accuracy Table for 2022. Results for 2023 are similar. 

Crop Name 
Declared 
Parcels 

Well 
Classified 

Producer 
Accuracy 

Confusion 
Class 1 1% 

Confusion 
Class 2 2% 

Confusion 
Class 3 3% 

Rest 
% 

Alfalfa 13 10 0,77 Wheat 0,15 Barley 0,08 Olives 0 0 

Bananas 28 26 0,93 Barley 0,07 Wheat 0 Olives 0 0 

Barley 2791 2372 0,85 Wheat 0,06 
Land Lying 

Fallow 0,04 Triticale 0,02 0,03 

Black-Eyed Pea 28 24 0,86 Wheat 0,11 Vines 0,04 Olives 0 0 

Carob Trees 82 68 0,83 Land Lying 
Fallow 0,06 Barley 0,05 Wheat 0,04 0,02 

Citrus Trees 345 293 0,85 Barley 0,05 Olives 0,04 Wheat 0,03 0,02 

Clover 23 22 0,96 Wheat 0,04 Olives 0 Bananas 0 0 

Cucumbers 13 13 1,00 Wheat 0,00 Olives 0 Bananas 0 0 

Deciduous Fruit 
Trees 523 430 0,82 Olives 0,05 Vines 0,04 Barley 0,03 0,05 

Figs 19 14 0,74 Olives 0,16 Wheat 0,05 Deciduous 
Fruit Trees 

0,05 0 

Land Lying 
Fallow 1944 1433 0,74 Barley 0,09 Olives 0,07 Wheat 0,06 0,04 

Lolium 34 28 0,82 Barley 0,12 Wheat 0,06 Olives 0 0 

Melon 22 17 0,77 Land Lying 
Fallow 

0,14 Wheat 0,05 Potatoes 0,05 0 

Oat 253 210 0,83 Barley 0,09 Wheat 0,05 Land Lying 
Fallow 0,02 0,02 

Olives 1405 1211 0,86 Wheat 0,04 
Land Lying 

Fallow 0,04 Barley 0,03 0,03 

Onions 31 25 0,81 Wheat 0,06 Barley 0,06 Potatoes 0,06 0 

Orchard 212 164 0,77 Olives 0,07 Wheat 0,05 Barley 0,03 0,08 

Peas 71 61 0,86 Wheat 0,04 Barley 0,03 Vicia 0,03 0,04 

Permanent 
Grassland 

196 184 0,94 Wheat 0,03 Barley 0,02 Olives 0,01 0,01 

Potatoes 200 174 0,87 Wheat 0,05 Barley 0,04 Land Lying 
Fallow 0,02 0,01 

Shrub Trees 10 8 0,80 Wheat 0,10 Barley 0,1 Oat 0 0 

Tomatoes 50 41 0,82 Land Lying 
Fallow 

0,04 Barley 0,04 Vines 0,04 0,06 

Traditional Trees 293 233 0,80 Barley 0,06 Olives 0,04 Wheat 0,03 0,08 

Triticale 412 335 0,81 Wheat 0,09 Barley 0,08 Land Lying 
Fallow 0,01 0,01 

Various 
Vegetables 197 103 0,52 Potatoes 0,15 Wheat 0,07 Barley 0,06 0,19 

Vicia 266 222 0,84 Barley 0,06 Wheat 0,05 
Land Lying 

Fallow 0,03 0,03 
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Table 26: Cyprus User Accuracy Table for 2022. Results for 2023 are similar. 

Vines 752 702 0,93 Wheat 0,03 Barley 0,03 Olives 0 0 

Walnuts 21 17 0,81 Deciduous 
Fruit Trees 

0,10 Olives 0,05 Citrus Trees 0,05 0 

Watermelon 40 34 0,85 Barley 0,10 Wheat 0,03 Various 
Vegetables 0,03 0 

Wheat 2407 1993 0,83 Barley 0,08 Land Lying 
Fallow 0,04 Triticale 0,02 0,02 

Crop Name 
Classifie
d Parcels 

Well 
Classified 

User 
Accuracy 

Confusion 
Class 1 1% 

Confusion 
Class 2 2% 

Confusion 
Class 3 3% 

Rest 
% 

Alfalfa 12 10 0,83 Wheat 0,08 Barley 0,08 Olives 0,00 0,00 

Bananas 26 26 1,00 Wheat 0,00 Olives 0,00 Barley 0,00 0,00 

Barley 2998 2372 0,79 Wheat 0,07 
Land Lying 

Fallow 0,06 Olives 0,02 0,07 

Black-Eyed Pea 25 24 0,96 Potatoes 0,04 Wheat 0,00 Olives 0,00 0,00 

Carob Trees 69 68 0,99 Land Lying 
Fallow 0,01 Wheat 0,00 Olives 0,00 0,00 

Citrus Trees 314 293 0,93 Olives 0,03 Orchard 0,02 
Land Lying 

Fallow 0,01 0,02 

Clover 35 22 0,63 Barley 0,11 Wheat 0,09 Oat 0,06 0,11 

Cucumbers 14 13 0,93 Tomatoes 0,07 Wheat 0,00 Olives 0,00 0,00 

Deciduous Fruit 
Trees 476 430 0,90 Olives 0,03 

Land Lying 
Fallow 0,02 

Various 
Vegetables 0,01 0,04 

Figs 14 14 1,00 Wheat 0,00 Olives 0,00 Bananas 0,00 0,00 

Land Lying 
Fallow 1754 1433 0,82 Wheat 0,06 Barley 0,06 Olives 0,03 0,04 

Lolium 28 28 1,00 Wheat 0,00 Olives 0,00 Bananas 0,00 0,00 

Melon 18 17 0,94 Barley 0,06 Wheat 0,00 Olives 0,00 0,00 

Oat 223 210 0,94 Various 
Vegetables 0,02 Wheat 0,01 Barley 0,01 0,01 

Olives 1490 1211 0,81 
Land Lying 

Fallow 0,09 Barley 0,02 
Deciduous 
Fruit Trees 0,02 0,06 

Onions 26 25 0,96 Barley 0,04 Wheat 0,00 Oat 0,00 0,00 

Orchard 164 164 1,00 Wheat 0,00 Oat 0,00 Bananas 0,00 0,00 

Peas 61 61 1,00 Wheat 0,00 Oat 0,00 Bananas 0,00 0,00 

Permanent 
Grassland 

212 184 0,87 Barley 0,05 Land Lying 
Fallow 

0,04 Wheat 0,01 0,03 

Potatoes 239 174 0,73 Various 
Vegetables 0,13 Barley 0,06 Wheat 0,04 0,05 

Shrub Trees 8 8 1,00 Wheat 0,00 Oat 0,00 Bananas 0,00 0,00 
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Towards smart sampling 
As previously explained for the BC of Lithuania, alert cases are adaptively determined based on 
associated result probabilities. We evaluate alert levels by considering two critical parameters: 
 

● a, which denotes the difference in probabilities between the top two confident predictions. 
● b, referred to as persistent misclassifications, representing the total number of cases flagged 

as wrongly declared throughout the cultivation year. 
 
This evaluation is visually represented through a traffic light system. For high-risk alerts (level 2 and 3), 
these parameters are configured to reflect an estimated percentage of false declarations, 
approximately 8-9% in the case of Cyprus's BC, based on historical data. In Figure 51, precision and 
recall are graphed across different disagreement percentages within the total declarations. Instances 
misclassified based on their initial declarations are sorted inversely based on their confidence intervals 
between the two most confident classifier predictions. The optimal balance between precision and 
recall is achieved at approximately 10%, slightly exceeding the expected false declaration percentage. 
Parameter a serves as the confidence interval threshold, dynamically set to represent around 10% of 
total instances. This approach helps ensure effective alert identification for a more robust assessment 
of false declarations. 
 

Tomatoes 46 41 0,89 Various 
Vegetables 

0,07 Vicia 0,02 Land Lying 
Fallow 

0,02 0,00 

Traditional Trees 257 233 0,91 Land Lying 
Fallow 

0,04 Olives 0,03 Barley 0,01 0,02 

Triticale 467 335 0,72 Barley 0,14 Wheat 0,12 Land Lying 
Fallow 0,01 0,01 

Various 
Vegetables 107 103 0,96 Barley 0,01 Vicia 0,01 Land Lying 

Fallow 0,01 0,01 

Vicia 234 222 0,95 
Land Lying 

Fallow 0,02 Wheat 0,02 Peas 0,01 0,00 

Vines 785 702 0,89 
Deciduous 
Fruit Trees 0,03 

Land Lying 
Fallow 0,03 Olives 0,02 0,03 

Walnuts 17 17 1,00 Wheat 0,00 Oat 0,00 Bananas 0,00 0,00 

Watermelon 34 34 1,00 Wheat 0,00 Oat 0,00 Bananas 0,00 0,00 

Wheat 2528 1993 0,79 Barley 0,07 Land Lying 
Fallow 0,05 Olives 0,02 0,07 
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Figure 51: Evaluation of accuracy on high-risk disagreement vs the number of alert cases based on the 

confidence interval between two major predictions distribution (parameter a). 

Parameter b, which signifies the count of times a sample is consistently misclassified in multiple 
classification iterations, is consistently set at a value of 2. 
 
In Figures 52 and 53 presented below, we visualize the progression of precision and recall concerning 
high-risk alert cases (level 2 and 3) during the cultivation periods of 2022 and 2023, respectively. 
Precision approaches near-perfect values early in the cultivation period, while the recall of false 
declarations peaks towards the end of the year. Other actual wrongly declared cases are either 
assigned to lower-risk alert categories or remain undetected. Figure 54 portrays the distribution of 
actual wrongly declared cases categorized by the different alert levels generated by our system. 

 
Figure 52: Progress of precision and recall of high-risk alert cases (level 2 and 3) during 2022. 
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Figure 53: Progress of precision and recall of high-risk alert cases (level 2 and 3) during 2023. 

 
Figure 54: Portion of actual wrongly declared cases distribution among the various risk alerts output. 

In Figures 55 and 56, we provide visual representations of two parcels indicated as high-risk alerts on 
2022 to highlight the differences between the average NDVI behaviour of the declared crop type 
(orange colour), the predicted crop type from the classifier (green colour), and the actual NDVI time 
series of the specific parcel (blue colour). These figures clearly show that in both cases, the curve of 
the sample and the average curve of the predicted crop type closely resemble each other. 
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Figure 55: NDVI and S2-image of a case predicted as Vines and declared as Land Lying Fallow. According to this 
plot, fallows present much different NDVI signal during the cultivation period, which is definitely not evident 

here. 

 

 
Figure 56: NDVI of a case predicted as Banana Trees and declared as Land Lying Fallow. According to this plot, 
fallow should present different characteristics. On the other hand, the NDVI signal is almost identical with the 

average NDVI of the Banana trees cases. 
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Discussion and limitations 
 
In summary, our results demonstrate an exceptional level of accuracy, indicating practical applicability. 
Through a semi-automatic approach (users can set their own confidence thresholds of acceptance), 
users can leverage these results and their associated confidence levels to guide their focus towards 
more specific cases. Initially, in the context of the smart sampling scenario, we set stringent confidence 
parameters to enhance precision, resulting in a limited number of cases with exceptionally high 
precision. However, as we transition to a more exhaustive monitoring scenario, we relax these 
parameters to capture a greater number of alerts, with the primary goal of maximizing recall. 
 
To address the challenge of training with inaccurately labelled data effectively since there is a 
significant high portion of false applicants’ declarations (8-9%) in GSAA, we implement stacking 
ensembles, elaborated in detail in D3.7. This methodology involves training multiple base hierarchical 
models, each on an individual subset of the original dataset. The core aim is to harness the diversity of 
these models, each excelling at capturing different aspects of the data. During training, each base 
hierarchical model operates on its own dataset subset and utilizes the hierarchical structure of crop 
classification to enhance predictions at lower levels. Once trained, the stacking ensemble combines 
their predictions using majority voting, with the final decision based on the majority vote. This 
ensemble approach harnesses the collective knowledge of the models, resulting in a more 
comprehensive data representation and improved classification accuracy, consistently above 80%. 
Importantly, when dealing with false or inaccurately labelled data, this methodology offers enhanced 
resilience. The base models, trained independently on different data subsets, are less susceptible to 
the influence of individual instances of incorrect labelling. Additionally, the majority voting mechanism 
helps filter out erroneous predictions, as incorrect predictions are unlikely to achieve a majority 
consensus among the models. 
 
Furthermore, our results reveal that one of Cyprus's primary challenges, the relatively small average 
parcel size, minimally impacts the model's performance. The methodology, detailed in D3.7, operates 
at the pixel level for cases with less than 10 clear pixels, with results aggregated at the parcel level 
through majority voting. These smaller cases are excluded from the model's training. Cases with not 
any clear S2 pixel after buffering (approximately 0.01 hectares), are excluded from the model's 
estimation. Last but not least, performance tends to improve for larger parcels, affirming the 
methodology's robustness and reliability. 
 

3. BC3: Monitoring the condition of soil – Belgium 

EV ILVO acts as a data provider in the Envision projects, as it is described in D4.1 and due to this, it is 
needed to satisfy two primary requirements: i) To develop soil quality data products that adequately 
support the needs for CAP monitoring at E.U. level. Ii) To deliver those products to the Envision 
platform to allow the easy and effective deployment of the products and to support the provision of 
the Envision services, considering also the Envision technological framework. To support both primary 
requirements within the current reporting period EV ILVO: 
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• Further, automated and completed the topsoil organic carbon prediction process, as that is 
described in D3.3, D3.4 and D3.7, in a way to be able to deliver soil quality data products to the 
Envision platform but to allow the use of Spatial-Temporal Asset Catalog (STAC) services as 
described in D3.7. 

• Improved the way we provided the data products to the Envision platform, as described in D3.7, 
conforming with the provided directions coming from the contracting authority in a way to support 
further interoperability. 

• Adopted an API-based architectural approach to allow either the direct use of the topsoil ML 
models (see more at D1.9 2nd Progress Report) or the development of applications that make on-
demand requests for a data product for specific AOI (polygon), similar to the one demonstrated at 
the AgriTEF Dag in Flanders on Jun 6 2022. 

• Improved the accuracy of the topsoil organic carbon prediction models and finalised the modelling 
process, and covered all mentioned D1.9 scenarios. 

• Developed and presented the Flemish Soil Quality Maps that use as an indicator the predictions of 
the topsoil organic carbon model, also considering the pedological conditions, as described in D3.7. 
The data products deliver information at pixel and parcel levels. 

• Adapted the developed models to allow the application to other E.U. regions by using INSPIRED 
harmonised data sets, as described in D3.7.  

3.1. Methodology 

EV ILVO defined a methodology (Figure 8) that enables current scientific research outcomes and 
delivers on a large scale soil quality data products using indicators that rely on topsoil organic carbon 
predictions. As we have presented in other deliverables like D3.4, D3.3 and D3.7, the methodology 
allows the continued development of data products at regional (for example, in Flanders, Figure 9), 
National and E.U. levels. The data products provide the information at pixel and parcel levels aiming 
to cover the CAP needs for soil organic carbon monitoring in cropland, supporting P.A.s applying their 
strategic plans.  
 
The significant methodological phases have remained the same within the current reporting period. 
However, we took action, and we performed adjustments to:  
• Further, automated and completed the topsoil organic carbon prediction process, as that is 

described in D3.3, D3.4 and D3.7 in a way to be able to deliver soil quality data products to the 
Envision platform and to allow the use of Spatial-Temporal Asset Catalog (STAC) services as 
described in D3.7 (Figure 10).  

• It is now possible to deploy the topSOC ML prediction model at each time stamp (satellite image) 
of the cloudless bare soil collection and compare the results using only the synthetic layer (Figure 
11). 

• Improved the way we provided the data products to the Envision platform, as described in D1.6, 
conforming with the provided directions coming from the contracting authority in a way to support 
further interoperability.  

• Additionally, EV ILVO will deliver both Data products A and B at ZENODO and the modelling 
metadata using the OGC GeoPackage 1.3.1 to support interoperability. However, we still need to 
provide LV with detailed information on the Flemish model accuracy, the information related to 
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the sampling campaign and the lab measurements using a report that will follow the provided data 
products. 

• Adopted an API-based architectural approach to allow either the direct use of the topsoil ML 
models (see more at D1.9 2nd Progress Report) or the development of applications that make on-
demand requests for a data product for specific AOI (polygon), similar to the one demonstrated at 
the AgriTEF Dag in Flanders on Jun 6 2022 (Figure 12). 

• The use of STAC services and the provision of the data products or the TopSOC ML predictions by 
using APIs allows not only the effective collaboration with other partners, for example, NOA, but 
also the future provision of the data as a service to the Envision platform and the collaboration 
with Flemish Governmental projects like the Soil Passport. 

• Improved the accuracy of the topsoil organic carbon prediction models and finalised the modelling 
process, and covered all mentioned D1.9 scenarios. 

• Developed and presented the Flemish Soil Quality Maps that use as an indicator of the predictions 
of the topsoil organic carbon model, also considering the pedological conditions, as described in 
D3.7. The data products deliver information at pixel and parcel levels (Figure 14).  

• Adapted the developed methodology to allow the application to other E.U. regions by using 
INSPIRED harmonised data sets, as described in D3.7 (Figure 13).  

3.2. Product description 

For a more text like description and more details, see deliverable 3.7 and 3.5. For source data and data 
formats see table 3.5.  
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Figure 57: Significant methodological phases supporting large-scale SOC mapping and development of soil 

quality indicators at pixel (intra-field) and parcel level (aggregation). 

 

Figure 58: Soil Quality data product presented at the AgriTEF Day on the 6th o June 2023. 
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Figure 59: For the development of the data products, access to the satellite image collections or to other data 
products is being done using the Spatial Temporal Asset Catalogs service (STAC). 

 
Figure 60: Within the current reporting period, EV ILVO automated further the data development process, 

adding the ability to deploy an ML on the synthetic layer or for each bare soil cloud collection layer. Each layer 
represents different timestamps within the collection. The ability to deploy the ML for each timestamp enables 
the topsoil organic carbon prediction separately or the statistical process of the predictions. Both support the 
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monitoring with the further assessment of the accuracy of the model and the dynamic visualisation of the 
results. 

 
Figure 61: Demonstration of the possibility of providing the data products by using an API. This way, a farmer 
can request to see the intra-field soil quality conditions only for his parcels. The demonstration took place on 
the Flemish AgriTEF Day, collaborating with the Flemish Department of Agriculture (LV), allowing EV ILVO to 

consume an API that delivers per Farm the agricultural parcels. We used DjustConnect authorisation and data 
consent services to overcome GDPR issues successfully. 
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Figure 62: Passing from topSOC prediction to the Development of Soil Quality data products at pixel and parcel 

level, considering pedoclimatic conditions. By using INSPIRED harmonised data, applying the same steps to 
other E.U. regions is possible. 

 
Figure 63: Envision Soil Quality products at pixel and parcel level, covering the Flemish region. 

 
Figure 64: EV ILVO SOC methodology tries to balance three goals to achieve large-scale applicability. First, easy 

to produce, second to be operational and third, to achieve the needed accuracy levels to support the CAP 
needs for SOC monitoring. 
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3.3. Validation criteria and results 

Soil Organic Carbon monitoring 

Within the current reporting period, we continue the work on the modelling, aiming to improve the 
accuracy. We developed and tested several regression models within the third iteration of our product 
developments. In this deliverable, we will present the results of the three basic model scenarios: 

● Scenario A: Input parameters are only the reflection values. This scenario is the continuation 
of the basic scenario of the first iteration. Because the models have the same input 
parameters, we compared the modelling results with those from the first iteration. 

● Scenario B: We have included an extra input parameter, the soil association type. 
● Scenario C: We have included an extra input parameter, the soil association type and the 

period (Month). 

Table 27: Executed SOC modelling scenarios. 

  Modelling scenarios for the SOC Models 

Iterations 
period 

1st 
iteration 

Oct 20- 
Feb 22 

2nd iteration 

Marc – August 2022 

3nd iteration 

Sept 2022 – June 2023 

Scenario 
Name 

Scenario A Scenario 
A 

Scenario B Scenario C Scenario A Scenario B Scenario C 

Input 
parameter

s 

Reflection
s Values of 

all S2 
bands 

Reflectio
ns Values 
of all S2 
bands 

Reflections 
Values of all 

S2 bands 

soil 
association 

type 

  

Reflections Values 
of all S2 bands 

soil association type 

period (Month). 

Reflections 
Values of 

all S2 
bands 

Reflections 
Values of all 

S2 bands 

soil 
association 

type 

  

Reflections 
Values of all 

S2 bands 

soil 
association 

type 

period 
(Month). 

Parameter
s Value 

Median 
value per 
band for 

the period 
May 2018 

All reflection values per band for the period 
May 2018 until August 2022 

All reflection values per band for the 
period May 2018 until April 2023 
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until Dec 
2021 

Reflection 
values 

extracted 

Cloudless 
Bare Soil 

Collection 
Layer 

Cloudless Bare Soil Collection Layer Cloudless Bare Soil Collection Layer 

SOC 
measurem

ents 
region 

Flanders Flanders Flanders 

Training 
sampling / 

cross 
validation 
strategy 

80%, 20%, 
10% 

random 
sampling 

80%, 
20%,20% 

random 
sampling 

/Fold 
Group 
using 

point I.D. 

80%, 20%, 
20% 

random 
sampling 

/Fold Group 
using point 

I.D. 

80%, 20%, 20% 

random sampling 
/Fold Group using 

point I.D. 

80%, 
20%,20% 

random 
sampling 

/Fold 
Group 

using point 
I.D. 

80%, 20%, 
20% 

random 
sampling 

/Fold Group 
using point 

I.D. 

80%, 20%, 
20% 

random 
sampling 

/Fold Group 
using point 

I.D. 

Model 
Code 

01MedBa
nds 

02TSeBa
nds 

02TSeBands
Soil 

02TSeBandsSoilMo
n 

03TSeBan
ds 

03TSeBands
Soil 

03TSeBandsS
oilMon 

In the third iteration, we followed an approach similar to the second approach, which means: 

• We train the models using the reflection values coming from all timestamps per pixel. 
• The model sampling strategy is 80%, 20%, 20%, which means 20% of the sampling points consist 

of the unseen data set, and from the 80% of the seen data set, the 80% consist of the training set 
and 20% the test set. 

• In scenarios B and C, we use point I.D. to define a cross-validation strategy that considers that 
records belong to specific measurement points and makes sure that records belonging to the same 
point cannot be in different folds for Cross-Validation or both in calibration and test set for 
prediction, thus preventing overfitting. The unseen data is also selected so that there the point id's 
of the unseen data is not present in the seen dataset. 

• After testing, we decided not to proceed with Scenario D, because we didn't show any 
improvement in accuracy. 

• After testing, we decided not to proceed with using markers that point out the phenological states 
due to the difficulty on the method's applicability. The provided data set do not allow the specific 
definition of the start and end of a crop growing cycle. 

• The TopSOC prediction supported the development of Soil Quality indicators. There as explained 
in D3.7 we use the distribution method to identify the zone in the Flemish region where the 
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expected TopSOC is below, close, or above the average, considering also the pedoclimate 
conditions. This approach allows the identification of zones within the parcel where the conditions 
are not favourable. 

In the following pages, we will present the modelling validation results with some figures and tables 
that describe the model's performance, how the parameters contribute to the results and other 
information that can better support the end users of this data product to understand the model's 
accuracy. 

Table 28: 3rd iteration model validation results for different scenarios. 

Scenarios Scenario B Scenario A Scenario C 

Model Code 03TSeBandsSoil 03TSeBands 03TSeBands 

Models with 
the best 

performance 

E.T. R2:0.70 R2:0.68 R2:0.68 

RPD:1.84 RPD:1.78 RPD:1.78 

MLP R2:0.65 R2:0.37 R2:0.37 

RPD:1.68 RPD:1.26 RPD:1.26 

catboost R2:0.58 R2:0.62 R2:0.62 

RPD:1.55 RPD:1.62 RPD:1.62 

Basian 
Ridge 

R2:0.44 R2:0.42 R2:0.42 

RPD:1.33 RPD:1.34 RPD:1.34 

 



 
 

78 
 The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

3.4. Discussion 

 
The results are on independent, not before seen data by the models. But the results can be 
inconsistent/ unstable with different divisions of training and validation/ test data.  
This mainly signifies certain combinations of soil associations with certain spectral signatures are then 
not present in the training set, because spectral models do not work well outside or their calibration 
range. 
More top soil OC samples, especially for underrepresented bare soil spectral signatures/ soil 
associations combinations could help remedy this in the future.  
 
Technological Roadmap see deliverable 3.7, also 3.7 for limits algorithm, requirements.  
 
Deliverable 3.5 for input/output table and data format, schemas/ workflows in 3.5 for soil campaign 
design, 3.7 for schemas/ workflows top soil OC modelling, OC regression map generation, and Soil 
Quality data product.  
 

4. BC4: Monitoring of organic farming requirements – Serbia 

4.1. Product description 

The present section of the deliverable deals with the validation process of the D5 product, developed 
in the context of the Envision project by AgroApps, and in particular in the sub-service "Distinction of 
Organic Farming Practices".  It follows a “Data product as service” business model aiming to provide 
an Agriculture Monitoring System for Certification Bodies that seek a surveillance tool for the 
assessment of the validity of farming practice declarations. 
 
The data product being validated is a vector geospatial feature which is served through the ENVISION 
platform, or alternatively could be served via WFS to the user, in a shapefile format. It contains the 
parcel polygon boundary geometries, and as far as attributes, the evaluation of the Classification as 
Organic/Conventional farming practice, in the representation of a traffic light system. Its values are 
given in a standardised confusion matrix terminology, and depict the result of the prediction in regards 
with what was initially declared. The main details of this data product, regarding the input data, the 
coverage area, the methods incorporated as well as the output, are summarised in the following table. 
 

Table 29: D5 Product - Distinction of Organic Farming Practices service outline. 

Product Service 
Data 
Input 

Data 
Format 

Thematic 
Content 

Spatial 
Distribution 

Data 
Processing 

Applied 
Method 

Data 
Output 

Data 
Format 

DP5 

Distincti
on of 
Organic 
Farming 
Practice
s 

LPIS 
(GeoSer
bia) 

SQL 
table, 
Shapef
ile,Ge
ojson 

Land 
Parcel 
Identificat
ion 
System 

User 
Defined, 
(across 
Serbian 
Administrati
on Units) 

Spatial 
Aggregatio
n 

Dissolve  
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GSA 
(OCS) 

SQL 
table, 
csv 

Farming 
Practice 
Declarati
ons 

 

Spatial 
Proximity 

Inner 
Bufferin
g 

 

 

Comput
e Parcel 
Geomet
ryArea 
Comput
e Parcel 
Geomet
ry 
Elongati
on 

Data 
Descriptive 
Statistics 

Frequen
cy 
Distribu
tion 

Spatial 
Sampling 

Random 
Points 

          

  

SoilGrid
sTM 

Raster 
Grids 
(.tif) 

Soil 
Organic 
Carbon 

User Defined 
Areas of 
Interest 

Raster 
Calculation 

Comput
e Soil 
Organic 
Matter 

 

  
Sand/Silt/
Clay 
content 

 

Raster 
Reclassifica
tion, 
Conditional 

Comput
e USDA 
Soil 
Texture 

Sentinel 
2 MSI 

Raster 
Grids 
(.SAFE) 

VIS-NIR-
SWIR 
reflectanc
e 

User Defined 
Areas of 
Interest 

  

L1C 

 

Atmospheri
c 
Correction 

Sen2Cor 

L2A Feature 
Extraction 

Vegetati
on 
Indices 

 

 Quality 
Masking 

Temporal 
Gap Fill 

Spline 
Interpol
ation 

Smoothing 
– Temporal 
Derivatives 

Savitzky 
– Golay 
Filters 

Image 
Texture 

GLCM 
Metrics 
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Vegetation 
Phenology 

Double 
Sigmoid 
Curve 
Fitting 

Dimensiona
lity 
Reduction 

PCA 

          

 

Outlier 
Detection 

Isolation 
Forest 

 

Novelty 
Detection 

One-
Class 
SVM 

  
ML 
Classificati
on 
Algorithm 

XG-
Boost 
(XGB) 

Data 
Augmentat
ion 

 

  

Zonal 
Functions 

Zonal 
Parcel 
Area 
Tabulat
e 

 

Zonal 
Parcel 
Statistic
s 
(Mean, 
Standar
d 
Deviatio
n) 

 TrafficLi
ght – 
Confusi
on 
Metrics 

Shapefil
e 

 
The relevant metadata provided to the user concerning the product are the accuracy evaluation 
metrics of the crop specific classification models, the spatial and temporal extent of the service job, 
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the EO features used, and of course, the descriptive statistics of the input data concerning the farming 
practice declarations. 
 
The objectives of the product are, to implement the training of classification algorithms with EO data, 
to predict farming practice at plot level for a specified crop type, and to report to the user information 
on the validity of the declaration in the form of a traffic light system that examines the following 
possibilities:  
 

● a parcel was predicted conventional while being organic 
● a parcel was predicted organic while being conventional 
● a parcel was predicted correctly as conventional 
● a parcel was predicted correctly as organic 

 
It allows the user to reach conclusions on the compliance of the crop declaration. For example, the 
case where a parcel is predicted as organic while being conventional, is an indication of non-
compliance of the declaration with the prediction of the classification models, which would need to 
be further checked. 
 
The input data, for the 2022 and 2023 pilot business cases, included spatial information from the 
Serbian LPIS and their associated attributes from the GSA statements. The table schema of the GSA 
was proposed to include the following fields: 
 

● Parcel ID (unique id - Primary Key) 
● Applicant ID 
● Year of Declaration 
● Farming Practices: The declared type of farming practices (organic or conventional) 
● Declared Crop Code 
● Crop Variety 
● Crop Type Category 

 
The geographical distribution of the parcel data in the Serbian territory is depicted on the maps that 
follow, while statistical data concerning their statistics are given in the subsequent tables. 
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Figure 65: Geographic Distribution of 2022 pilot parcels. 

 
Figure 66: Geographic Distribution of 2023 pilot parcels. 

Table 30: Data Descriptive Statistics Distribution of 2022 pilot parcels. 

Distribution of parcel count and area per crop 

Crop Type 
Conventional Organic 

Total Area Total Count 
Area (Ha) Count Area (Ha) Count 
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Maize 0 0 402.6802 54 402.6802 54 
Soybean 2.56 4 330.0166 81 332.5766 85 
Sunflower 5.8197 9 405.8672 87 411.6869 96 
Wheat 9.0466 18 1069.8639 149 1078.9105 167 
Total Result 17.4263 31 2208.4279 371 2225.8542 402 

 

Table 31: Data Descriptive Statistics Distribution of 2023 pilot parcels. 

Distribution of parcel count and area per crop 

Crop Type 
Conventional Organic 

Total Area Total Count 
Area (Ha) Count Area (Ha) Count 

Maize 1.383 4 32.644 15 34.027 19 
Soybean 0 0 165.738 26 165.738 26 
Sunflower 9.9289 18 177.4786 45 187.4075 63 
Wheat 6.525 10 374.8306 139 381.3556 149 
Total Result 17.8369 32 750.6912 225 768.5281 257 

 
The analysis of the shape and geometry of the polygons provided by the Serbian LPIS was carried out 
by calculating a shape index that quantifies the elongation and is indicative of the number of "useful 
and representative" pixels that can be aggregated on the parcel when calculating the zonal statistics.  
The aim was to establish the adequacy of the dataset in providing a sufficient set for training machine 
learning algorithms.  The following relationship was thereafter implemented:  
 

𝑆𝐻𝐴𝑃𝐸	𝐸𝐿𝑂𝑁𝐺𝐴𝑇𝐼𝑂𝑁	= 4 ⋅ 𝜋 ⋅ 𝑆𝐻𝐴𝑃𝐸	𝐴𝑅𝐸𝐴
D𝑆𝐻𝐴𝑃𝐸	𝑃𝐸𝑅𝐼𝑀𝐸𝑇𝐸𝑅E2

		

 
The index values range in the interval [0,1], to represent polygon shapes that span from elongated to 
circular geometries. The distribution of Shape Elongation Index values in the pilot plot data for the 
years 2022 and 2023 is shown in the histogram charts below, while a table of statistics for the geometry 
parameters is given below. The plot of typical plots representing the average Elongation and Area 
values is further given in the figures below. 

 
Figure 67: Shape Elongation Histogram of 2022 pilot parcels. 
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Figure 68: Shape Elongation Histogram of 2023 pilot parcels. 

Table 32Distribution of Shape Statistics of 2022 pilot parcels. 

2022 Shape Geometry Statistics 
 Elongation Area (Ha) 
Mean 0.36 5.94 
Median 0.31 0.72 
St.Dev 0.22 15.7 

 

Table 33: Distribution of Shape Statistics of 2023 pilot parcels. 

2023 Shape Geometry Statistics 
 Elongation Area (Ha) 
Mean 0.32 3.3 
Median 0.24 0.7 
St.Dev 0.22 9 

 

 
Figure 69: Typical shape representations of 2022 and 2023 pilot parcels. The shape elongation index value of 

each parcel is valued. 

The key conclusions that emerged from the preliminary evaluation of the input data were as follows:  
 

● The data show a wide geographical dispersion in the regions of Central Banat, North Banat, 
South Banat, South Backa and West Backa, for which variable climatic conditions are assumed  
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● The geometry of the Serbian LPIS polygons provided for the 2022 and 2023 pilots showed 
particularly small and elongated parcels 

● The count and the monitored area of data per crop, and even more so when analysed within 
different varieties, was found to be in small numbers. 

● The distribution between Conventional and Organic plots was highly heterogeneous, with the 
latter strongly dominating the dataset 

 
It should be noted that the ground truth data were obtained in 3 batches following requests to increase 
the sample size. However, the Outlier Analysis via visual inspection was performed on each take 
yielded a significant proportion of the data as not eligible.   Visual inspection is a relatively simple 
process that requires the user to have a fairly basic knowledge, which could possibly be trained, of 
what a timeseries NDVI profile displays in a crop, as well as the sowing/cutting dates in the area of 
interest. The user observes the profile of each field-sample in the training set, and scores it as to the 
correctness of its statement. More specifically, a visual inspection of NDVI phenology curves was 
performed to identify instances that did not capture the typical profile of the crops under 
consideration, and were communicated to OCS for further investigation. In the following figure, a 
typical example of a non - eligible parcel that was addressed to OCS for validation is presented. The 
observed NDVI curve clearly displays a parcel that couldn’t be classified as a wheat crop. 
 

 
Figure 70: Detected data outlier. Non eligible crop type declaration. 

These data quality control procedures resulted in the exception of several parcels from the sample, 
which can be clearly indicated in the following tables for the pilot cases for the years 2022 and 2023. 
 

Table 34: Data Outliers Descriptive Statistics Distribution of 2022 pilot parcels - Non Eligible data. 

Data Outliers - Distribution of parcel count and area per crop - 2022 

Crop Type 
Conventional Organic 

Total Area Total Count 
Area (Ha) Count Area (Ha) Count 

Maize 0 0 99.6302 10 99.6302 10 
Soybean 0 0 73.7966 23 73.7966 23 
Sunflower 1.2597 2 13.8872 2 15.1469 4 
Wheat 0.5466 1 50.4439 30 50.9905 31 
Total Result 1.8063 3 237.7579 65 239.5642 68 
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Table 35: Data Outliers Descriptive Statistics Distribution of 2023 pilot parcels - Non Eligible data. 

Distribution of parcel count and area per crop - OUTLIERS 

Crop Type 
Conventional Organic 

Total Area Total Count 
Area (Ha) Count Area (Ha) Count 

Maize 0 0 0 0 0 0 
Soybean 0 0 0 0 0 0 
Sunflower 1.1969 2 2.4806 7 3.6775 9 
Wheat 1.267 2 24.3806 22 25.6476 24 
Total Result 2.4639 4 26.8612 29 29.3251 33 

 
The final distribution of data from the 2022/2023 pilots as formulated by the verification procedures 
described previously, is recorded in the tables that follow. The number and area of pilot plots by 
farming practice, in the different crops and geographical areas are listed. 
 

Table 36: Descriptive Statistics Distribution of 2022 pilot parcels - Cleaned dataset. 

Distribution of parcel count and area per crop - CLEANED DATA 

Crop Type 
Conventional Organic 

Total Area Total Count 
Area (Ha) Count Area (Ha) Count 

Maize 0 0 303.05 44 303.05 44 
Soybean 2.56 4 256.22 58 258.78 62 
Sunflower 4.56 7 391.98 85 396.54 92 
Wheat 8.5 17 1019.42 119 1027.92 136 
Total Result 15.62 28 1970.67 306 1986.29 334 

 

Table 37: Descriptive Statistics Distribution of 2023 pilot parcels - Cleaned dataset. 

Distribution of parcel count and area per crop - CLEANED DATA 

Crop Type 
Conventional Organic 

Total Area Total Count 
Area (Ha) Count Area (Ha) Count 

Maize 1.383 4 32.644 15 34.027 19 
Soybean 0 0 165.738 26 165.738 26 
Sunflower 8.732 16 174.998 38 183.73 54 
Wheat 5.258 8 350.45 117 355.708 125 
Total Result 15.373 28 723.83 196 739.203 224 

 

Table 38: Geographical distribution of parcel area per crop of 2022 pilot parcels - Cleaned dataset. 

Geographical distribution of parcel area per crop -2022 

Geographic Districts Farming Practice 
Area (Ha) 

Total Area (Ha) 
Maize Soybean Sunflower Wheat 

Central Banat Conventional 0 2.56 4.56 8.5 15.62 
Central Banat Organic 3.14 0 0 0.75 3.89 
North Banat Organic 1.3 0 0 3.07 4.37 
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South Banat Organic 35.55 93.6 272.67 941.86 1343.68 
South Backa Organic 263.06 160.28 115.22 73.18 611.74 
West Backa Organic 0 2.34 4.09 0.56 6.99 
Total Result 303.05 258.78 396.54 1027.92 1986.29 

 

Table 39: Geographical distribution of parcel count per crop of 2022 pilot parcels - Cleaned dataset. 

Geographical distribution of parcel count per crop -2022 
Geographic 
Districts Farming Practice 

Area (Ha) 
Total Area (Ha) 

Maize Soybean Sunflower Wheat 
Central Banat Conventional 0 4 7 17 28 
Central Banat Organic 12 0 0 4 16 
North Banat Organic 3 0 0 9 12 
South Banat Organic 2 45 75 95 217 
South Backa Organic 27 11 8 10 56 
West Backa Organic 0 2 2 1 5 
Total Result  44 62 92 136 334 

 

Table 40: Geographical distribution of parcel area per crop of 2022 pilot parcels - Cleaned dataset. 

Geographical distribution of parcel area per crop - 2023 

Geographic Districts Farming Practice 
Area (Ha) 

Total Area (Ha) Maize Soybean Sunflower Wheat 
Central Banat Conventional 1.383 0 8.732 5.258 15.373 
Central Banat Organic 23.461 6.899 0 0 30.36 
North Banat Organic 0.969 0 0 2.234 3.203 
South Banat Organic 4.201 0 76.519 255.996 336.716 
South Backa Organic 4.013 158.839 98.479 92.22 353.551 
Total Result 34.027 165.738 183.73 355.708 739.203 

 

Table 41: Geographical distribution of parcel count per crop of 2022 pilot parcels - Cleaned dataset. 

Geographical distribution of parcel count per crop - 2023 
Geographic 
Districts Farming Practice 

Area (Ha) 
Total Area (Ha) Maize Soybean Sunflower Wheat 

Central Banat Conventional 0 4 7 17 28 
Central Banat Organic 12 0 0 4 16 
North Banat Organic 3 0 0 9 12 
South Banat Organic 2 45 75 95 217 
South Backa Organic 27 11 8 10 56 
Total Result  44 60 90 135 329 

 
It became apparent from the above evidence that the pilot data did not meet the data 
recommendations set for ML model training and for achieving a desired level of accuracy. Although 
there are no minimum requirements of the service about the quantity and quality of the input data, 
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these issues definitely have a big effect on the algorithm performance. Therefore, there are data size 
recommendations that relate with the spatial extent of the dataset (how localised is the dataset in 
regards with soil & climatic conditions and their effect on crop growth) and its sub-stratification within 
crop varieties, with a “lose” rule of thumb of at least “50 times the number of involved crop varieties” 
parcel samples. The data quality is influenced by the balance between the number of samples within 
organic/conventional classes, and the total samples for each variety, aiming for a uniform data 
distribution. For this important reason, the decision was made regarding Data Product Validation as 
follows: 
 

● to not carry out, as is normally done, training with the data of pilot plots, but direct inference 
on them using the most accurate models trained with historical data of previous years, 
extraction of validation metrics on the unseen data of 2022/2023. In this way to test the work 
hypothesis of whether an accurate model can have good generalisation qualities not only on 
unseen data of the same year, but also on subsequent growing seasons. 

● to validate the traffic light system for the Identification of Organic Farming Practices at the 
farm level. 

4.2. Criteria 

The data product was validated in terms of its accuracy relative to ground truth data from the LPIS and 
the GSA that are considered the standard, against which the product is compared. Ground truth data 
kept out of the algorithm training and are considered as “unseen” by the model. Normally they are 
partitioned out of the input dataset, as a test set, in order to give an unbiased evaluation of the model 
predictive qualities. For reasons already mentioned in the previous chapter, that relate to the quantity 
of the pilot dataset, data from 2022 and 2023 seasons were used to validate those historical data 
models which showed superior accuracy.  Accuracy evaluation was conducted with these datasets as 
“unseen”, firstly on a pixel level, and subsequently the traffic light system was evaluated on a parcel 
level. Confusion matrix notation and terminology was used for this aim. In the problem of statistical 
classification, a confusion matrix, also known as error matrix is a specific table layout that allows 
visualisation of the performance of an algorithm, typically a supervised learning one. Each row of the 
matrix represents the instances in an actual class while each column represents the instances in a 
predicted class, or vice versa – both variants are found in the literature. The name stems from the fact 
that it makes it easy to see whether the system is confusing two classes. 
 
To assess the accuracy of our classification scheme, the following metrics were acquired: 
 

● Overall Accuracy 
● Precision: Precision (also called positive predictive value) is the fraction of relevant instances 

among the retrieved instances  
● Recall: (true positive rate) is the probability of a positive test result, conditioned on the 

individual truly being positive. 
● Specificity: (true negative rate) is the probability of a negative test result, conditioned on the 

individual truly being negative 
● Balanced Accuracy: The balanced accuracy in binary and multiclass classification problems to 

deal with imbalanced datasets. It is defined as the average of recall obtained in each class. 
● F1 Score: also known as balanced F-score or F-measure. The F1 score can be interpreted as a 

harmonic mean of the precision and recall 
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4.3. Validation Methodology and results 

In this chapter the methodology applied for the validation of the product D5: Distinction of Organic 
Farming Practices in the pilot business cases of the Envision project is developed and subsequently the 
results of the data validation process are presented. This process aims to test the accuracy with which 
ML classification models trained from input data can predict farming practice in cases of parcel data 
that have not participated in the training.  
 
The elaboration of the algorithm training/evaluation methodology followed and implemented in the 
historical data models, is explained in detail in D3.5, D3.7 and the most recent D1.9 Reporting of 2nd 
Reporting Period. The validation of the historical data models is thoroughly elaborated on the recent 
D1.9. 
 
For the inference task, all the steps of the successive components of the data processing flow of the 
service, described in the above deliverables, were followed, concerning:  

● Field Data Import: LPIS+GSA data subset import to the database 
● Spatial Data POSTGIS processing + Descriptive Stats  
● EO Data Import:  Data import from CreoDIAS and Copernicus Dataspace APIs  
● SoilGrids Import 
● EO Feature Engineering: Vegetation and Image Texture indice timeseries and derivatives 
● Data Outlier/Anomaly Detection 

 
For prediction of the classification layer, it was considered to use the most accurate of the models 
trained in the past, with the use of historical datasets. While the evaluation of these Classification 
models is presented in detail in D1.9 Reporting of 2nd Reporting Period, a summary of the error metrics 
is given in the following table. 
 
Table 42: Test Set Validation Results for all crop/year scenarios. Confusion Matrix Error Metrics from Historical 

data classification models. 

 
 



 
 

90 
 The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

What is evident from the historical data classification models Error Metrics is that the most evaluative 
cases were:  

● Maize Crop (2016) - Early/Full Season Models 
● Soybean Crop (2016) - Early/Full Season Models 
● Sunflower Crop (2019) - Early/Full Season Models 
● Wheat (2018) - Early/Full Season Models 

 
EO Features were processed for each Geographic District – Area of Interest. Regarding the temporal 
coverage of the EO Features produced, the dates defining the Early/Full Prediction seasons are 
presented on the following table. 
 

Table 43: Temporal coverage of Crop Seasons in ML models. 

Crop Season Start Early Prediction Full Season End 
Maize 01 February 25 July 01 October 
Soybean 01 February 25 July 01 October 
Sunflower 01 January 25 July 01 November 
Wheat 01 September 01 June 01 August 

 
Model inference was predicted for each crop, at a spatial resolution of 10m, mapping the classification 
probability (p-values) for discriminating organic from conventional farming practice. At this point, a 
threshold p-value was determined, for the discretization of the classification result on boolean decision 
values.  The classification probability threshold was decided by optimization after visual inspection and 
analysis of the ROC curves of the Internal Cross Validation of the models. It was set to a value that 
minimised False Positive Rate and maximised True Positive Rate, that approximated 0.55. 
 
Evaluation was initially performed at a pixel level. All pixels inside a parcel were labelled according to 
the farming practice reference declaration, given the assumption that every parcel involves one crop, 
which was assessed during outlier detection that it holds true. The binary classification inference 
results were extracted for each parcel with the use of zonal area tabulation. The evaluation of 
predicted vs reference was based on the confusion matrix created for each classification model, and 
validation metrics were calculated. 
 
Pilot cases 2022 - Confusion Matrices 
 

Table 44: Pixel based Confusion Matrix of Maize 2016 Early Season Model. 

Maize 2016 Early Season Model 
 Predicted Class 
Declared Class Organic Conventional 
Organic 10569 15910 
Conventional 0 0 
Total Pixel Result 10569 15910 
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Table 45: Pixel based Confusion Matrix of Maize 2016 Full Season Model. 

Maize 2016 Full Season Model 
 Predicted Class 
Declared Class Organic Conventional 
Organic 21914 4564 
Conventional 0 0 
Total Pixel Result 21914 4564 

 

Table 46: Pixel based Confusion Matrix of Soybean 2016 Early Season Model. 

Soybean 2016 Early Season Model 

 Predicted Class 

Declared Class Organic Conventional 
Organic 22615 984 
Conventional 321 10 
Total Pixel Result 22936 994 

 

Table 47: Pixel based Confusion Matrix of Soybean 2016 Full Season Model. 

Soybean 2016 Full Season Model 

 Predicted Class 

Declared Class Organic Conventional 
Organic 18938 4660 
Conventional 287 44 
Total Pixel Result 19225 4704 

 

Table 48: Pixel based Confusion Matrix of Sunflower 2019 Early Season Model. 

Sunflower 2019 Early Season Model 
 Predicted Class 
Declared Class Organic Conventional 
Organic 14270 34679 
Conventional 283 144 
Total Pixel Result 14553 34823 

 

Table 49: Pixel based Confusion Matrix of Sunflower 2019 Full Season Model. 

Sunflower 2019 Full Season Model 

 Predicted Class 
Declared Class Organic Conventional 
Organic 14804 34142 
Conventional 113 314 
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Total Pixel Result 14917 34456 
   

Table 50: Pixel based Confusion Matrix of Wheat 2018 Early Season Model. 

Wheat 2018 Early Season Model 

 Predicted Class 

Declared Class Organic Conventional 
Organic 124268 661 
Conventional 842 196 
Total Pixel Result 125110 857 

 

Table 51: Pixel based Confusion Matrix of Wheat 2018 Full Season Model. 

Wheat 2018 Full Season Model 
 Predicted Class 
Declared Class Organic Conventional 
Organic 124375 552 
Conventional 1037 0 
Total Pixel Result 125412 552 

 

Table 52: Evaluation of Historical Data Classification Models with 2022 unseen pilot data. 

Prediction 
Model 

Percentage of pixels 
that are declared 
organic and are 

classified as organic (%) 
{Recall} 

Percentage of pixels that 
are declared conventional 

and are classified as 
conventional (%) 

{Specificity} 

Percentage of pixels 
that are classified as 

organic and are 
declared organic (%) 

{Precision} 
Maize 

Maize 2016 
Full Season 82.7 N/A 100 

Maize 2016 
Early Season 39.9 N/A 100 

Soybean 
Soybean 
2016 Full 
Season 

80.2 13.2 98.5 

Soybean 
2016 Early 
Season 

95.8 3.02 98.6 

Sunflower 
Sunflower 
2019 Full 
Season 

30.2 73.5 99.2 

Sunflower 
2019 Early 
Season 

29.1 33.7 98.05 
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Wheat 
Wheat 2018 
Full Season 99.5 0 99.1 

Wheat 2018 
Early Season 99.4 18.8 99.3 

 
Pilot cases 2023 - Confusion Matrices 
    

Table 53: Pixel based Confusion Matrix of Maize 2016 Early Season Model. 

Maize 2016 Early Season Model 
 Predicted Class 
Declared Class Organic Conventional 
Organic 3628 652 
Conventional 122 57 
Total Pixel Result 3750 709 

 

Table 54: Pixel based Confusion Matrix of Soybean 2016 Early Season Model. 

Soybean 2016 Early Season Model 

 Predicted Class 

Declared Class Organic Conventional 
Organic 20416 1163 
Conventional 0 0 
Total Pixel Result 20416 1163 

 

Table 55: Pixel based Confusion Matrix of Sunflower 2019 Early Season Model. 

Sunflower 2019 Early Season Model 
 Predicted Class 
Declared Class Organic Conventional 
Organic 8735 13958 
Conventional 167 976 
Total Pixel Result 8902 14934 

  
Table 56: Pixel based Confusion Matrix of Wheat 2018 Early Season Model. 

Wheat 2018 Early Season Model 

 Predicted Class 

Declared Class Organic Conventional 
Organic 36340 9027 
Conventional 181 491 
Total Pixel Result 36521 9518 
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Table 57: Pixel based Confusion Matrix of Wheat 2018 Full Season Model. 

Wheat 2018 Full Season Model 
 Predicted Class 
Declared Class Organic Conventional 
Organic 44923 447 
Conventional 672 0 
Total Pixel Result 45595 447 

 

Table 58:  Evaluation of Historical Data Classification Models with 2023 unseen pilot data. 

Prediction 
Model 

Percentage of pixels 
that are declared 
organic and are 

classified as organic (%) 
{Recall} 

Percentage of pixels that 
are declared conventional 

and are classified as 
conventional (%) 

{Specificity} 

Percentage of pixels 
that are classified as 

organic and are 
declared organic (%) 

{Precision} 
Maize 

Maize 2016 
Early Season 84.76 31.84 96.74 

Soybean 
Soybean 
2016 Early 
Season 

94.61  100 

Sunflower 
Sunflower 
2019 Early 
Season 

38.49 85.38 98.12 

Wheat 
Wheat 2018 
Full Season 99.01 0 98.52 

Wheat 2018 
Early Season 80.1 73.06 99.5 

 
Traffic Light System Evaluation 
The results of classification are provided in the data product as a vector geospatial feature which is 
served through the ENVISION platform, or alternatively could be served via WFS to the user, in a 
shapefile format. It contains the parcel polygon boundary geometries, and as far as attributes, the 
evaluation of the Classification as Organic/Conventional farming practice, in the representation of a 
traffic light system. Its values are given in a standardised confusion matrix terminology, and depict the 
result of the prediction in regards with what was initially declared. The prediction is decided by a 
configured threshold value on the classification probability, which is the actual output of the algorithm. 
If the spatial average within the parcel bounds is higher than 0.5 the parcel is inferred as organic. The 
traffic light values are the following: 

● False Negative (FN) also known as type II underestimation error if a parcel was predicted 
conventional while being organic 
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● False Positive (FP) also known as type I overestimation error if a parcel was predicted organic 
while being conventional 

● True Negative (TN) if a parcel was predicted correctly as conventional 
● True Positive (TP) if a parcel was predicted correctly as organic 

 
The outcome of the Traffic Light System for the 2022 and the 2023 pilots is given in a series of maps, 
on the annex of this deliverable.  The symbology representation of it can be observed on the following 
image.  

 
Figure 71: Symbology representation of the D5 data product traffic light system. 

A second level of evaluation regarded the traffic light system, and validated the performance among 
the different geographic regions of Serbia, in terms of parcel based accuracy metrics. On the tables 
that follow, a parcel based evaluation of the D5 product service “Distinction of Organic Farming 
Practices” is presented for the 2022 and 2023 pilot parcels.   
 
Pilot cases 2022 - Traffic Light System Evaluation - Predictions vs. Declarations 
 

Table 59: Evaluation of Data Product Traffic Light System - Validation of 2016 Maize Classification Model with 
2022 pilot data. 

Maize - 2022 pilot parcels 
Evaluation 

TP TN FP FN 
 

Precision Recall F1 Specificity 
Balanced 
ACC ACC 

Geographic 
Districts 

Total 
Result 

Central Banat 11 0 0 1 12 1 0.916 0.956 N/A N/A 0.916 
North Banat 3 0 0 0 3 1 1 1 N/A N/A 1 
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South Banat 2 0 0 0 2 1 1 1 N/A N/A 1 
South Backa 23 0 0 4 27 1 0.851 0.92 N/A N/A 0.85 
West Backa 0 0 0 0 0 N/A N/A N/A N/A N/A N/A 
Total Result 39 0 0 5 44 1 0.89 0.94 N/A N/A 0.89 

 

Table 60: Evaluation of Data Product Traffic Light System - Validation of 2016 Soybean Classification Model with 
2022 pilot data. 

Soybean - 2022 pilot parcels 
Evaluation 

TP TN FP FN 
 

Precision Recall F1 Specificity 
Balanced 
ACC ACC 

Geographic 
Districts 

Total 
Result 

Central Banat 0 0 4 0 4 0 N/A N/A 0 N/A 0 
North Banat 0 0 0 0 0 N/A N/A N/A N/A N/A N/A 
South Banat 45 0 0 0 45 1 1 1 N/A N/A 1 
South Backa 4 0 0 7 11 1 0.36 0.53 N/A N/A 0.363 
West Backa 2 0 0 0 2 1 1 1 N/A N/A 1 
Total Result 51 0 4 7 62 0.93 0.88 0.9 0 0.44 0.82 

 

Table 61:  Evaluation of Data Product Traffic Light System - Validation of 2019 Sunflower Classification Model 
with 2022 pilot data. 

Sunflower - 2022 pilot parcels 
Evaluation 

TP TN FP FN 
 

Precision Recall F1 Specificity 
Balanced 
ACC ACC 

Geographic 
Districts 

Total 
Result 

Central Banat 0 7 0 0 7 N/A N/A N/A 1 N/A 1 
North Banat 0 0 0 0 0 N/A N/A N/A N/A N/A N/A 
South Banat 47 0 0 28 75 1 0.626 0.77 N/A N/A 0.62 
South Backa 0 0 0 8 8 N/A 0 N/A N/A N/A 0 
West Backa 2 0 0 0 2 1 1 1 N/A N/A 1 
Total Result 49 7 0 36 92 1 0.58 0.73 1 0.79 0.61 

 

Table 62: Evaluation of Data Product Traffic Light System - Validation of 2018 Wheat Classification Model with 
2022 pilot data. 

Wheat - 2022 pilot parcels 
Evaluation 

TP TN FP FN 
 

Precision Recall F1 Specificity 
Balanced 
ACC ACC 

Geographic 
Districts 

Total 
Result 

Central Banat 4 0 17 0 21 0.19 1 0.32 0 N/A 0.19 
North Banat 9 0 0 0 9 1 1 1 N/A N/A 1 
South Banat 94 0 0 1 95 1 0.98 0.99 N/A N/A 0.98 
South Backa 10 0 0 0 10 1 1 1 N/A N/A 1 
West Backa 1 0 0 0 1 1 1 1 N/A N/A 1 
Total Result 118 0 17 1 136 0.87 0.99 0.93 0 0.5 0.87 
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Pilot cases 2023 - Traffic Light System Evaluation - Predictions vs. Declarations 
 

Table 63:  Evaluation of Data Product Traffic Light System - Validation of 2016 Maize Classification Model with 
2023 pilot data. 

Maize - 2023 pilot parcels 
Evaluation 

TP TN FP FN 
 

Precision Recall F1 Specificity Balanced ACC ACC Geographic Districts Total Result 
Central Banat 4 0 0 0 4 1 1 1 N/A N/A 1 
North Banat 2 0 0 0 2 1 1 1 N/A N/A 1 
South Banat 2 0 0 0 2 1 1 1 N/A N/A 1 
South Backa 7 0 0 0 7 1 1 1 N/A N/A 1 
Total Result 15 0 0 0 15 1 1 1 N/A N/A 1 

 

Table 64: Evaluation of Data Product Traffic Light System - Validation of 2016 Soybean Classification Model with 
2023 pilot data. 

Soybean - 2023 pilot parcels 
Evaluation 

TP TN FP FN 
 

Precision Recall F1 Specificity 
Balanced 
ACC ACC 

Geographic 
Districts 

Total 
Result 

Central Banat 3 0 0 0 3 1 1 1 N/A N/A 1 
North Banat 0 0 0 0 0 N/A N/A N/A N/A N/A N/A 
South Banat 0 0 0 0 0 N/A N/A N/A N/A N/A N/A 
South Backa 22 0 0 1 23 1 0.956 0.977 N/A N/A 0.956 
Total Result 25 0 0 1 26 1 0.96 0.98 N/A N/A 0.96 

 

Table 65: Evaluation of Data Product Traffic Light System - Validation of 2019 Sunflower Classification Model 
with 2023 pilot data. 

Sunflower - 2023 pilot parcels 
Evaluation 

TP TN FP FN 
 

Precision Recall F1 Specificity 
Balanced 
ACC ACC 

Geographic 
Districts 

Total 
Result 

Central Banat 0 15 1 0 16 0 N/A N/A 0.93 N/A 0.93 
North Banat 0 0 0 0 0 N/A N/A N/A N/A N/A N/A 
South Banat 19 0 0 8 27 1 0.703 0.826 N/A N/A 0.703 
South Backa 0 0 0 11 11 N/A 0 N/A N/A N/A 0 
Total Result 19 15 1 19 54 0.95 0.5 0.66 0.94 0.72 0.63 

 

Table 66: Evaluation of Data Product Traffic Light System - Validation of 2018 Wheat Classification Model with 
2023 pilot data. 

Wheat - 2023 pilot parcels 
Evaluation TP TN FP FN  Precision Recall F1 Specificity ACC 
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Geographic 
Districts 

Total 
Result 

Balanced 
ACC 

Central Banat 0 0 8 0 8 0 N/A N/A 0 N/A 0 
North Banat 6 0 0 0 6 1 1 1 N/A N/A 1 
South Banat 100 0 0 0 100 1 1 1 N/A N/A 1 
South Backa 11 0 0 0 11 1 1 1 N/A N/A 1 
Total Result 117 0 8 0 125 0.94 1 0.97 0 0.5 0.94 

 

4.4. Discussion 

In the following discussion section, a review of the conclusions drawn in the successive stages of the 
product's development and evolution as well as in the final evaluation of the traffic light system.  A 
technological roadmap, how the five developed products could be implemented in the area of another 
member state: standardisation of input data, limits of the algorithm, minimum requirements of 
training data, schemas how the achieved accuracy and the decision thresholds can be combined. 
 
Τhe task of distinguishing organic from conventional farming practices with the use of EO data was 
indeed very challenging. Initially, regarding the strategy, decisions had to be made about what EO 
derived classification features to use for the discrimination. Data dimensionality and more practical 
reasons regarding the spatial data extent and the available data space posed a certain limit as to how 
many features to use. The discussion was about whether to focus more on the spectral or the 
spatiotemporal content of the EO data. Clear scientific evidence about “a defined spectral signature” 
of an organic farming practice wasn’t found in the literature, rather than some few experimental cases 
that focused solely on crop/leaf canopy nutrient content. These studies used very high resolution 
multispectral and hyperspectral data, questioned the problem on specific crop varieties and on a highly 
local scale experimental plots, relying on abundant ground truth data about nutrient NPK inputs. On 
Envision, it was known from the start, that such in situ data were not available at a national scale. It 
was finally resolved, to focus more on the spatiotemporal aspects of vegetation phenology in the EO 
signal. 
 
In the successive benchmarks and iterations carried out to train the ML algorithms, the central issue 
was the "Bias-Variance Trade-off" that was noted. During the 1st iteration of ML model training, error 
values greater than the acceptable threshold were observed. In other words, the model used was not 
strong enough to produce an accurate prediction.  Therefore, this was a case of high bias, which was 
addressed by increasing the complexity of the models. The number of features was significantly 
increased by including NDVI Derivatives and Image Texture metrics. A dimensionality reduction was 
performed and a Boosting Trees classification algorithm was chosen instead of the original SVM, which 
is suitable for cases of high bias. 
 
At the 2nd iteration, the behaviour of the models was indicative of a case of high variance and a high 
tendency for over-fitting. The regularisation parameters were chosen in a range of values that made 
the modelling less "aggressive" in memorising the dataset. Unfortunately, the lack of samples with 
uniformity of distribution by crop variety and also by geographical distribution became apparent. 
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However, the performance of the models on unseen datasets was not the same across all crops. In the 
case of Sunflower for 2019 and 2020, the results showed quite good performance and qualities in 
relation to their over/under estimation (type I & II errors). Their efficiency was quite stable, regardless 
of the year, both in early and full season prediction. 
 
This is an important finding because it shows that when the algorithms are trained in a year specific 
manner, with enough data, diverse and balanced in terms of the underlying crop variety, and localised 
in a limited geographical space, they can give promising perspectives and good results, contributing 
with their predictions to the specific business case, be it mid or full season planning. This seems to 
indicate that the resulting product could be viable under certain assumptions regarding the input data 
it receives, and the accepted error thresholds set by its design. 
 
The generalisation properties of the models, regarding prediction on other years/seasons, was 
showcased on the pilot business cases validation for the 2022/2023 seasons, and elaborated on the 
current deliverable. The inference of models trained on data of other years yielded unsatisfactory 
results in the aspect of underestimating. Unfortunately. ground truth data on pilot years were scarce, 
unequally distributed, and with many outliers regarding the crop type. Thus, they were not enough to 
train year specific models over the pilot seasons. A few points to mention: 
 

● Class imbalance and overall scarcity of data among crop varieties of the training datasets affect 
the predictive qualities of the models, which is evident in the moderate performance of Recall 
and Specificity metrics.  It is worth mentioning that the crap variety is a very important 
attribute in the discrimination process and thus the dataset should be representative of this 
aspect. 

● Model underestimation, the condition where a parcel was predicted conventional while being 
organic, gets even worse in the case when models trained with historical data aim to predict 
future instances of unseen data. 

● Regionality of the training dataset also seems to play an important role due to the implications 
of local soil and climate conditions on vegetation phenology  

 
Data Cleaning and quality control was a very important aspect of the service development due to 
findings of severe false crop type declaration. What was seen in many conventional/organic 
declarations was that there were incorrect entries in the crop type attribute.  Initial efforts of Outlier 
detection with unsupervised methods did not yield good results. The hybrid approach was far more 
precise, but had the disadvantage of requiring the involvement of expert knowledge. Visual inspection 
is a relatively simple process that requires the user to have a fairly basic knowledge, which could 
possibly be trained, of what a timeseries NDVI profile displays in a crop, as well as the sowing/cutting 
dates in the area of interest. The user observes the profile of each field-sample in the training set, and 
scores it as to the correctness of its statement. 
A critical issue is scaling up, and the impact on human resources needed for the hybrid data cleaning 
process. Ideally, to avoid any bias that may arise from continuous photo-interpretation, it would be 
legitimate to involve more than one user, in overlapping subsets.  Considering that expert estimation 
could be provided by a limited number of users, it is implied that scale up is not linear, but on the 
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contrary, a large increase in the training set disproportionately increases the human resources 
required. An alternative could be a concurrent crop classification system, such as the one that was also 
developed in the project, or similar ones (Sen4Cap etc), and the selection of a training set with high 
confidence in crop type estimation (high p-value). But also in this case the presence of outliers in LPIS 
is significant and this has its impact on the quality of the estimation. In conclusion, an important data 
requirement that would enhance the business case would be the possibility for the user to upload a 
second auxiliary set of large-scale field visits data, to train the novelty detection algorithm and improve 
the training dataset without the need for visual inspection of the NDVI profile. This option wasn’t 
developed during the project due to the absence of “real in situ” Field Visits data, but could definitely 
be a major improvement to the product. 
 
Up to this point, many conclusions underline the difficulty of the task, the particularities of the input 
dataset and its quality control, the fine tuning of the models, etc. They regard issues that arise from 
the ML model training and propose recommendations for achieving an acceptable level of accuracy. 
 
However, the concept behind the product is an Agriculture Monitoring Data Service. Respectfully each 
end user could provide regional-or national parcel data and farming practice declarations, employ EO 
features, Train/Tune-Validate/Evaluate a ML model and finally predict on a parcel level assessing a 
value from the traffic-light system that relates with its farming practice conformance. All the issues 
that came up in the Serbian pilot, and the experience gained through the project, led to the design and 
implementation of processing components and tools that were incorporated to the service in order to 
improve its functions.  Any user could deploy a new project, train a new algorithm for a crop of interest, 
and predict on different regions, preferably geographically localised. Towards the end of the Envision 
project, evidence exists that a user following the recommended guidelines regarding data 
quality/quantity, feature engineering, and outlier detection could achieve an acceptable level of 
prediction accuracy.  After all, the minimum acceptable error is user subjective and relates with the 
user’s risk analysis of its business case. 
 
A technological roadmap, how the five developed products could be implemented on the area of 
another member state includes: 
 
Standardisation of input data: LPIS postgres tables/shapefiles/geojson files and GSA tables should be 
provided by the user with a harmonised content, which means that they should both share a primary 
key field of the same data type configuration. This would assure that the SQL join of the spatial and 
attribute tables would be successful. The table schema of the GSA should be proposed to the user to 
include the following fields 
 
    • Parcel ID (unique id - Primary Key) 
    • Applicant ID 
    • Year of Declaration 
    • Farming Practices: The declared type of farming practices (organic or conventional) 
    • Declared Crop Code 
    • Crop Variety 
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    • Crop Type Category 
 
Limitations of the algorithm: Regard the issues related with, 

● The limited sample data support. The particularity of small and elongated parcels, and the 
boundary buffering that occurred in order to enhance the reliability of the sampled pixels, 
further decreased the total number of parcels. 

● Uncertainty with regards the validity of the organic parcel declarations. It is believed that there 
were cases of wrongly declared parcels cultivation in order to comply with local subsidy 
regulations. The case of instances where several cultivations in the same parcel were declared 
as one, furtherly made things more complicated. Outlier analysis helped in order to filter out 
non reliable data, but due to its unsupervised nature, it performed well in the cases where the 
feature space data clouds had good separability properties. 

● Spatial distribution of organic/conventional sample data of the same crop, shows that these 
may be located far apart from each other, and this fact may introduce small shifts on the 
timeseries temporal scale due to slightly different sowing/harvest dates related to local 
climatic conditions. 

 
Minimum requirements of training data: There are no minimum requirements about the quantity and 
quality of the input data, but definitely these issues have a big effect on the algorithm performance. 
Therefore, there are data size recommendations that relate with the spatial extent of the dataset (how 
localised is the dataset in regards with soil & climatic conditions and their effect on crop growth) and 
its sub-stratification within crop varieties, with a “lose” rule of thumb of at least “50 times the number 
of involved crop varieties” parcel samples. The data quality is influenced by the balance between the 
number of samples within organic/conventional classes, and the total samples for each variety, aiming 
for a uniform data distribution.  
 
Schemas how the achieved accuracy and the decision thresholds can be combined: the modification 
of the classification decision threshold, is done heuristically from the ROC curve of ML tuning cross 
validation. The outermost upper left point of the curve represents the p-threshold with the lowest 
error rates and the higher accuracy. 

5. Conclusions  

The D3.6 Data Products Validation Report provides a comprehensive overview of the data processing, 
model training, and evaluation methodologies employed for monitoring environmental practices in 
sustainable agriculture. The report outlines the various steps involved in the data processing flow, from 
data import to feature engineering and outlier detection. The evaluation of historical data classification 
models demonstrates the effectiveness of the methodologies in predicting agricultural practices, with 
specific crops and years highlighted as the most evaluative cases. Challenges, such as discrepancies in 
reported parcel data and spatial distribution of sample data, are discussed, emphasizing their impact 
on model performance. Recommendations concerning the quantity and quality of training data are 
also provided, suggesting a balanced and uniform data distribution for optimal performance. The 
report references multiple deliverables, ensuring a thorough understanding of the methods and 
evaluations used. 
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Moving forward, and as a roadmap for prospective projects or service providers, several 
recommendations emerge. Data augmentation techniques can be employed to support data diversity, 
effectively addressing discrepancies and spatial distribution challenges. There’s potential in exploring 
new machine learning architectures to further improve accuracy and generalisability. A deeper 
temporal analysis, especially considering the impacts of climate change on crop yields, could offer 
valuable insights. Broadening the data sources, perhaps by including meteorological or socio-economic 
indicators, can provide holistic view. Consistent data quality can be maintained by establishing rigorous 
protocols for data collection, verification, and preprocessing. Furthermore, establishing a feedback 
mechanism will allow real-time feedback from farmers and stakeholders, refining model predictions 
and engaging agricultural experts, environmental scientists, and policymakers will ensure that the 
methodologies remain grounded in reality and can drive sustainable agricultural policies.   
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6.      ANNEX:  

BC4: Monitoring of organic farming requirements – Serbia: Evaluation Maps of the traffic Light 
System for the 2022 parcel data 
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