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1 Executive summary 

This deliverable is the validation report of the Earth Observation (EO) data products developed during 

the ENVISION project. The produced EO services are tailored to monitor agricultural malpractices and 

the environmental impacts.  

In this document there is the description of every product and service that was developed in ENVISION. 

More specifically, for every business case the pilot, the data collection, the validation results, the 

limitations and the next steps are described. 

This work package aims at designing and developing the EO data products of the ENVISION platform, 

which will address all the potential customers’ specific needs. The described results are the initial ones, 

based on historical data, and it is just the first attempt of developing the ENVISION products/ services. 

Further development, calibration and validation will be performed during the lifetime and will be 

presented in the forthcoming deliverables. 

An update of this deliverable will be provided in M34 in the D3.6 Data product validation report (final 

version). 
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2 Validation Planning 

 

The validation planning element will be used to describe the pilot and samples data to be acquired for 

the data products and services validation. The size, shape and location of the project’s study areas will 

not be further described herein, since all the relevant information is provided in the respective 

deliverables (D3.2 Catalogue on auxiliary data and available repositories to be incorporated and D3.3 

Data products initial report). ENVISION project involved a number of discrete pilot areas (business 

cases), data of differing dates, quality, resolution, or scale that will be used both during the validation 

procedure and the operational function. The general concept of the validation strategy consists of 

collecting the in-situ data, provided by the business cases’ end-users of ENVISION, and their statistical 

correlation analysis with satellite data. 

 

This element will describe all the relevant products of the locational data collection and image 

acquisition design, will define the key attributes to measured and validated, and will indicate the 

number and type of samples (e.g. geospatial data requirements, samples definition and description, 

satellite data acquired) expected. It will also describe where, when and how measurements or images 

were acquired. 

 

Within validation planning, decisions are made on the type and number of samples and locations of 

observations. This section will explain how these decisions were derived to meet the specifications of 

the planned interpretation (e.g. accuracy and precision) or analysis. 

 

Furthermore, this element will be used to describe how the “right” data or imagery (type, quality and 

resolution) will be acquired for the operational function and validation procedure of the ENVISION 

project. The element will determine whether different resolutions of data are to be used in different 

parts of the project. 
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3 ENVISION Data Products description 

 

3.1 BC1: Monitoring multiple environmental and climate requirements of CAP – Lithuania 

3.1.1 Pilot and samples description 

 Analytics on Vegetation and Soil Index Time-series  

 

Retrieve Analytics and Aggregated Statistics on custom Areas using GIS querying on the top of the 

DataCube 

The methodology behind the analytics retrieval and the statistics was described in depth in D3.3.  It’s 

worth mentioning that the procedures under this service generate multiple results either by using 

DataCube directly or by making spatial queries to the database. The first one includes plots and graphs, 

whereas the second one is related to a series of aggregated values for each parcel or a set of parcels. 

This service can be particularly useful for the NPA, assisting in the evaluation of the outcomes of the 

different products and services provided for CAP monitoring purposes, namely Stubble Burning 

Identification, Grassland Mowing Event Detection, Natura 2000 Hotspot Detection, Minimum Soil 

Coverage for Soil Erosion, Smart Sampling and Crop Type Mapping, which have been described in detail 

in D3.3. 

 

Minimum Soil Cover 

The methodology for detecting a minimum soil cover over parcels to enhance protection of soil against 

erosion is described in detail in D3.3. The evaluation of the methodology is based on a validation 

dataset has been provided by the NPA (D3.2). This dataset includes 293 black fallow parcels, which 

extend all across the country (Figure 1).  In more detail, these are cases that have been declared as 

“black fallow” but did not comply with the rules of GAEC4, which enforce a sowing to take place before 

November. Finally, on-the-spot-inspections for these fields were conducted from mid-November to 

mid-December. 
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Figure 1: Validation samples of black fallow GAEC 4 incompliances 

 

Runoff Risk Assessment for the Reduction of Water Pollution in Nitrate Vulnerable Areas (GAEC 1/ SMR 

1) 

As GAEC 1 rules require not to spread manure and/or slurry in the coastal protection zones of water 

bodies marked in the Surface Water Protection Zone layer, we have developed a run-off risk 

assessment taking into account the proximity of each parcel to the closest water surfaces. The latter 

layer is retrieved from the hydrographic network of Lithuania provided by NPA (Figure 2). The proposed 

methodology for the risk estimation is described in detail in D3.3. No validation data for this task are 

available. 

 
Figure 2: Lithuania water-bodies and hydrographic network 

 

Stubble Burning Identification 
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Stubble Burning Identification product is described in D3.3. This product is developed to answer the 

GAEC 6 requirement that is related to the burning of agricultural plants and their stubble. Due to lack 

of validation data, since NPA did not provide sufficient validation data (except 3 cases), the validation 

of the results in this area is done optically using photo-interpretation. The analytics procedures, 

however, can assist in an efficiently and timeless evaluation process. 

 

Harvest event detection 

The methodology regarding the Harvest event detection algorithm is described in D3.3. The lack of 

validation data is also an issue in this case. Thus, we collected a sample of 407 random samples from 

arable cultivations (Winter Cereals, Spring Cereals, Vegetables, Potatoes, etc.) in order to evaluate the 

precision of identification of harvest events visually, through photo-interpretation. Specifically, we 

identified abrupt changes in the NDVI and RBG time series, based on the crop type and the expected 

harvest period of the cultivation year. 

 
Figure 3: Random Sample picked for the identification of Harvest Events via photo-interpretation 

 Cultivated Crop Type Maps (CCTM)  

Methodology of Cultivation Crop Type Map product for Lithuania is described in detail in D3.3. For the 

validation of the product, Sentinel-1 and Sentinel-2 images from January of 2020 until the September 

of the same year were used. Specifically, statistical measures of Mean, Median and Standard Deviation 

calculated from the pixels encompassed in the LPIS buffered geometries for all the s1/s2 bands and 

indices, referred in D3.3. Moreover, a sample training dataset of about 100,000 instances for 16 crop 

classes and a respective validation one of more than 20,000 cases were extracted from 23 different 

areas across Lithuania territory (see Figure 4) and used for the model training and the subsequent 

evaluation product outputs respectively, as provided from the NPA (mentioned also in D3.2). 
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Figure 4: Sampled Areas of Lithuanian Validation Crops 

 

 Grasslands Mowing Event Detection  

The methodology for the Grasslands Mowing Events Detection product is composed of a pipeline of 

consecutive routines and is described in detail in D3.3.  

For the training and evaluation of the Data Fusion product, we collected pixels from several grassland 

fields, distributed across the entire Lithuanian territory, in order to incorporate different NDVI 

behaviours. As a result, the dataset includes various profiles of sparsity and local characteristic of the 

different areas. Apart from NDVI time series, we also utilize all SAR and InSAR time-series of the 

respective pixels. 

Additionally, for the requirements of Mowing Detection model, NPA provided only a few validation 

cases related to the compliance of the respective grassland fields (if a mowing event occurred inside 

the mandatory timeframe). For that reason, we adapted two different approaches in order to generate 

the necessary event timestamps, sufficient to train our models and validate the service’s results. 

1. Events Instances based on Photo-Interpretation  

Firstly, a blind photo-interpretation process was carried out by three experts to generate annotated 

event instances, based on optical Sentinel-2 imagery. Specifically, two of the experts worked 

independently on two different areas, visualized in Figure 6. For every detection, an approximate 

timeframe was identified, regarding the starting and finishing date of the event, based on the 

respective Sentinel image acquisitions, as well as the interpreter’s confidence and the estimated 

percentage of the mowed area (see Figure 5). Consecutively, the third expert evaluated the results of 

the other two (with 95% agreement) and decided on the final dataset. Finally, mowing compliance was 

easy to be inferred using Table 5: Lithuania National Mowing Regulations of D3.3. Overall, we 

produced a dataset of 2,344 grassland fields instances, including information regarding both the 

compliance and mowing event timeframe. 
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Figure 5: Preview of Photo-Interpretation results shapefile 

Despite the small number of grassland fields included in this approxiamation, we should keep in mind 

that the training of the DL model was performed on the pixel level, which resulted in more than 

100,000  cases. Specifically, each pixel is assigned with a positive label in a particular time instance if i) 

there is an event at this timestamp, for the parcel in which the pixel belongs and ii) there is a noticeable 

drop of the pixel's NDVI value (more than 0.2). That way, we ensure that we will consider events on a 

part of a parcel that has not been entirely mowed.  

 

 
Figure 6: Areas that Mowing Photo-interpretation took place 

2. NPA validation samples 

In order to exploit efficiently the conformity validation cases provided by the NPA (described in D3.2), 

a matching of the respective cases with the results provided by the SEN4CAP project took place. 

SEN4CAP mowing detection service provides information regarding the estimated timestamp that an 

event took place as well as the level of confidence of the prediction. For that reason, we collect all 

cases that match with the corresponding NPA validations on the level of conformity (Figure 7) and we 

keep only the most confident ones. Labels were assigned on the pixels of each parcel, in same fashion 

as described in the previous paragraph. The final dataset included almost 6,000 grassland fields 

collected from five different areas (Figure 8). 
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Figure 7: Intersection of NPA validations with SEN4CAP mowing results 

 
Figure 8: Sampled areas of NPA mowing conformity used 

3.1.2 Validation Results 

3.1.2.1 Analytics on Vegetation and Soil Index Time-series  

Retrieve Analytics and Aggregated Statistics on custom Areas using GIS querying on the top of the 

DataCube 

The methodology behind the analytics retrieval and the statistics was described in depth in D3.3.  It’s 

worth mentioning that the procedures under this service generate multiple and various results either 

by using DataCube directly or by making spatial queries to the database. The first one includes plots 

and graphs, whereas the second one is related to a series of aggregated values for each parcel or a set 

of parcels. It is worth mentioning that visualizations can be extracted for any s1/s2 product, any 

aggregated statistic measurement, either on the pixel or on the parcel level and for a specific parcel, 

a crop type or a crop family. Below are presenting some examples, which highlight the potential of big 

earth observation data and analytics: 

1. Animation of the temporal evolution of an area.  In Figure 9 and Figure 10, the NDVI index 

was calculated for the entire year of 2019 for a specific parcel.  The calculated values can be 

used as an input for an animated plot which reveals the evolution of the vegetation throughout 

the selected time range.  

2. Temporal Statistics over an area. The temporal statistics exploit the time dimension as in the 

previous sub-task. The difference here is that instead of creating an animation, we plot the 

data. The usage of these tools enhances the CAP monitoring by providing useful information 

about the evolution of the vegetation throughout a user-defined time range. The examples 
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below depict two parcels declared as spring cereals, but predicted as Winter cereal via the 

crop classification process of ENVISION. It's worth mentioning that this tool plays a crucial role 

to validation of results generated by the rest of back- end processes such as the grassland 

mowing and the crop classification. Specifically, the most of these services raise alerts.  

Decision-makers have the potential to examine effortless these alerts by exploring temporal 

statistics in any dimensions (time, location and band/index), without the need for relying on 

non-exhaustive, time-consuming and complex methods.  

 

 
Figure 9: Median monthly NDVI for parcel for which false-declaration-alert has been raised 
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Figure 10: Mean monthly NDVI for parcel for which false-declaration-alert has been raised 

 

3. Smoothed time-series. While the previous examples highlight the values of each pixel, these 

plots take into account the mean value of cloud-free pixels inside an area. As there can be gaps 

between two or more calculations due to cloud presence, a smoothing process takes place. 

Thus, patterns can be more noticeable and reveal trends throughout the years.  

 
Figure 11: NDVI smoothed mean values for a parcel for two years 

4. HeatMap of Clear Pixels. The production of a heatmap regarding clear pixels contributes to a 

better and more effective data analysis. For instance, Figure 12reveals a frequency analysis of 

the cloud-free pixels included in a parcel over a selected time window. This is very useful in 

cases of pixel based solutions for other products, since the optimal selection of the pixels (the 

ones with the highest number of cloud-free instances) can be easily acquired.  



 
 

17 

 
The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

 
Figure 12: Heatmap of clear pixels included in a parcel 

5. Index Anomalies. One of the primary goals of this task is to identify possible changes over the 

time. Thus, this sub-task focus on understanding possible anomalies to any chosen index. For 

example, NDVI measures the greenness of plant leaves, which indicates an overall vegetative 

health. As we have dense measurements for NDVI, there is the potential of comparing current 

NDVI value, either for a day or for a month, to the average computed NDVI over one or more 

years. From this comparison, often called NDVI Anomaly, we can determine the changes in an 

area regarding the drought or crop production. Figure 13 illustrates the NDVI standardized 

anomaly using short and long-time ranges values where short is the mean NDVI and long is the 

yearly NDVI.  
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Figure 13: Yearly mean NDVI, yearly standard deviation of NDVI, Monthly mean NDVI and NDVI anomaly for a 

specific parcel. 

 

6. Spatial Queries. As the aggregated results have been calculated, they are stored in the 

database. Thus, a series of simple and complex queries can take place. These queries can help 

users to monitor parcels over an area throughout the time. This geospatial database will be 

exploited by the ENVISION platform, where the latter will be connected in order to retrieve all 

the required data and visualize them via plots, layers in maps and raw text. At the same time, 

there is the potential for users to connect directly to the database so the data become 

available for process, analysis and integration to several GIS systems and applications. It 

becomes apparent that the storage of this information is of a high importance as it can be 

exploited by anyone. A number of queries are listed below in order to showcase the discrete 

and various information provided by ENVISION services and of which the output has initially 

visualized in CreoDIAS platform:  

a. List the mowing events for a specific parcel  
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Figure 14: Query for collecting back the results from grassland mowing events detection 

 

b. List the average area per crop type  

 
Figure 15: Query for calculating the distance between two parcels 

 

c. List the distance between two or more parcels  

 
Figure 16: Query for calculating the distance between two parcels 

d. List the false declarations based on predictions over an area or/and per farmer  

 



 
 

20 

 
The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

 
Figure 17: Visualization of the query’s result regarding false declarations based on predictions over an area  

 

Minimum soil Cover 

The minimum soil cover detection algorithm (described in D3.3) has been applied to a validation set of 

281 parcels. The accuracy of the algorithm is 61% as it detects soil presence in 171 of the 281 parcels 

of which we have at least one cloud-free image to analyse from end of September to December, 

whereas the most of the on-the-spot checks for the sample data has taken place at the end of 

November. It is worth mentioning that for a high number of misclassified parcels there was only one 

cloud-free image or/and a small number of cloud-free pixels, which implies the increase of wrong 

predictions’ percentage.  

 

Run-off Risk Assessment 

The run off risk assessment algorithm takes into account the parcel’s proximity to water surfaces. 

Initially, the algorithm iterates over every vertex of the parcel and calculate the water proximity. The 

minimum distance to a water surface is assigned as the corresponding value to each parcel. In addition, 

the Revised Universal Soil Loss Equation (RUSLE) has been calculated as it estimates the annual soil 

loss that is due to erosion through a factor-based approach using as input variables, described in D3.3. 

Taking into consideration the values of water proximity and RUSLE, runoff risk has been computed for 

each parcel. The risk level for the most parcels is high due to the fact that they are close to water 

surfaces. More results are presented in Table 1. At the same time Figure 18 depicts the visualization of 

the parcels along with their categories and the water surfaces around them. Both layers’ data is directly 

retrieved from the ENVISION database.  
 

Table 1: Run-off Risk Assessment Results 

 Very Low or 

Low Risk 

Moderate Risk Very High or 

High Risk 

Algorithm 79072 110 251067 
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Figure 18: Visualization of the run-off risk for a subset of parcels along with the water surfaces around them 

 

Stubble Burning Identification 

The Stubble Burning Identification algorithm is a threshold-based approach (as described in D3.3) for 

finding burnt areas. The lack of validation data and the existence of very few burnt parcels in the 

country, do not allow for an evaluation of the performance, in this case. However, there are several 

validation data in for the area of Cyprus, where the same algorithm is applied, and the results are 

presented in Section 3.2.  

 

Harvest Event Detection 

The Harvest event detection algorithm, as already mentioned in D3.3, is threshold-based approach 

looking for abrupt drops in NDVI values. The algorithm performs quite well, predicting with very close 

proximity the day of the harvest event. Specifically, the evaluation process includes a sample of 407 

randomly selected arable cultivations that we have checked using photo-interpretation of the RGB and 

NDVI components. Given that, for the majority of the cases (334 out of 407) we managed to identify 

the harvest events on time, within a range of less than 6 days, and even better, 163 from those within 

a range less than 3 days (Figure 19). Finally, we can see that the maximum error in term of DoYs is 24 

days. 
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Figure 19: Cumulative frequency (%) of distance in DoYs between the models prediction and validation 

 

 
Figure 20: Parcel before and after harvesting, as detected from the Harvest Event Detection algorithm 

 

3.1.2.2 Cultivated Crop Type Maps (CCTM)  

As explained in detail in D3.3, multiple crop type maps are produced throughout the cultivation period, 

starting from early April until the end of August. The accuracy of the different models increases 

gradually, as more acquisitions are included in the input, resulting to an optimal performance at the 

end of August. Figure 21 presents the F1 score for 16 different crop classes, in which the validation 

analysis during the cultivation period was performed. 
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Figure 21: Classifier Performance (F1 score) Progress over Cultivation Period 

Table 2 and Figure 22 illustrate the final classification report of the model, performed at the beginning 

of September. Accuracy of the classifier in relatively high for almost all the crop classes, with the 

exception of specific cases that have very low support (clover, green fallow, Lucerne, lupin). We should 

also mention that the classes of mixed crops, like agricultural mixes, other vegetables, protein plant 

and other crops on arable land, were excluded from the current study analysis, since they do not have 

a clear spectral profile and the performance of the classification model is very poor on those cases. 

Table 2: Classification Report based on the predictions provided at the early September  

 UA PA F1-Score Support 

Beans 0.78 0.77 0.78 155 

Black Fallow 0.77 0.63 0.69 712 

Buckwheat 0.73 0.79 0.76 237 

Clover 1.0 0.05 0.10 279 

Corn 0.73 0.81 0.77 167 

Green Fallow 0.00 0.00 0.00 81 

Lucerne 0.00 0.00 0.00 126 

Lupin 1.00 0.04 0.07 28 

Peas 0.89 0.72 0.80 437 

Potatoes 0.57 0.69 0.63 544 

Spring Rape 0.92 0.68 0.78 34 

Winter Rape 0.97 0.98 0.97 818 

Spring Cereal 0.86 0.92 0.90 3354 

Winter Cereal 0.94 0.95 0.94 4946 

Permanent Crops 0.37 0.17 0.23 140 

Grass 0.90 0.95 0.92 8052 

Macro Avg. 0.72 0.57 0.58 20110 

Weighted Avg. 0.88 0.89 0.88 20110 

Overall Accuracy   0.89  

Kappa   0.85  
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Figure 22: F1 score based on the predictions provided at the early September 

Tables 3 and 4 below depict the producer and user accuracy of the different cases, as well as the loss 

of information among classes and how the model confuses them. Specifically, the producer accuracy 

table (Table 3) indicates the crop type distribution of the false negative instances, namely what crop 

types does the model predict when it makes a mistake, for each one of the different classes. For 

example, for the case of clover we can see that 78% of actual clover cases has been predicted 

mistakenly as grass. Clover and grass have very similar spectral signatures, but the latter has almost 

30x more samples in the dataset, and thus the model reasonably struggles to identify the clovers. 

Similarly, 1st confusion class for all the annual crops (e.g potatoes, spring rape, peas, etc.) is the spring 

cereals since they belong in the same higher taxonomy class.  

On the other hand, the user accuracy table (Table 4) indicates the crop type distribution of the false 

positive instances, namely what is the ground truth of the predictions that the model makes a mistake. 

For instance, we can see that from the total predicted beans 78% were indeed beans, while 11% were 

in fact peas. Interestingly, in the occasion of clover we see that, even though the algorithm can cannot 

distinguish clovers from grasslands as stated before, everything that has been predicted as clover, is 

indeed a clover. On the other hand, in the case of green fallow and lucerne the model does not classify 

any instance as such. 

From the results it is obvious that the model performs much better in terms of User’s Accuracy instead 

of Producer’s Accuracy, which means that the model can identify successfully the spectral behavior of 

almost all crop types. This is significant for the sub-sequent smart sampling algorithm, since it is based 

on the predictions and their level of confidence in order to highlight the respective alerts of false 

declarations. 

Overall, these results were calculated at the end of August of 2020, against actual validation, when 

NPA needs to have the first results in order to start planning their OTSC campaigns. Eventually, in case 

we could accumulate more images of September into the feature space, and of course, more training 

samples into the training dataset, the model gives even better results.  
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Table 3: Lithuania Producer Accuracy Table 

 
  

Table 4: Lithuania User Accuracy Table 

 
 

As explained in detail in D3.3, we utilize the level of the predictions’ confidences throughout the entire 

cultivation period to display the most confident wrongly declared cases. Specifically, taking into 

consideration only the last classification run performed at the end of August, we identify more than 

90% of the wrongly declared cases from the farmers (high PA) and in the 85% of them with the have 

predicted the correct crop type also. However, the total amount of wrongly predicted cases is much 

greater than the actual wrongly declared cases, which results in low user’s accuracy. The smart sample 

algorithm (described in D3.3) presented suboptimal performance of recall (almost 35%) against the 
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actual validations provided by NPA.  The nature of the smart sampling algorithm lies upon the fact that 

the most confident predictions of a model reflect the truth, and thus if a prediction does not match 

with the true label, we assume this is a wrongly declared case. However, the NPA’s validation data 

contain wrongly declared parcels of very similar crop types (in their spectral signatures), such as clovers 

declared as grasslands, cases that our model would never be able to identify with high confidence. The 

smart sampling algorithm has been tested successfully in operational scenarios in the past with very 

high precision. Therefore, a precision of 50% (compared to the validation data) along with 

photointerpretation that we executed in the results, strongly indicate that are more cases that are not 

included into the actual ground truth misclassifications set and can be characterized as actual 

wrongly declared. 

The dataset of 2020 validation instances was devised from NPA using only remoting-sensing data, since 

on-the-spot expeditions were not feasible due to COVID-19 outbreak and the constraint regulations 

existed that period. For that reason, we consider that many of the actual wrongly declared cases were 

impossible to be distinguished, even from the best of the remote sensing experts, especially in cases 

where the crops’ signatures have very similar behaviour. In Figure 23 and Figure 24 we present 2 

parcels that showcase the difference between the average NDVI behaviour of the crop type of the NPA 

validation (blue colour), the crop type of the classifier’s prediction (orange colour) and NDVI time series 

of the specific parcel (stripped green line). It is clear that in both cases the curve of the sample and the 

respective average curve of the predicted crop type are much more alike. 
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Figure 23: NDVI of a case predicted as Winter Cereal and the label given is Spring Cereal 

 
Figure 24: NDVI of case predicted as Spring Cereal and the label given is Black Fallow 

Therefore, in order to highlight the efficiency of the smart sampling algorithm, we created a new set 

of misclassifications based on the predictions of all the RF models trained during cultivation period. 

This dataset includes all cases that have been identified as alerts (cases that have been predicted 

differently with high confidence, more information in D3.3) from all different RF models (persistent 

misclassifications). The threshold of confidence is set accordingly, so as the total number of the 

persistent misclassifications correspond to the excepted wrong declarations indicated by the NPA.  

Using the smart sampling routine, in Figure 25 we can see the final total of candidate wrong 

declarations as this formed at the end of August where it approximates the total of the persistent 

misclassifications.  
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Figure 25: Number of indicated wrongly declared cases modified throughout cultivation period 

Furthermore, in Figure 26 below we visualize the progress of Precision and Recall of the routine against 

persistent misclassifications. These cases were indicated as alerts in more than 8 different models. In 

order to evaluate even more the results, we conducted photointerpretation in all of the alerts of the 

last run. The outcomes of this indicated that almost all of these alerts were indeed wrongly declared 

cases, with an overall accuracy of more than 90%, which strengthens even more the assumption that 

there should be more wrongly declared parcels in the validation dataset.  

 

 
Figure 26: Precision and Recall of smart sampling algorithm over cultivation period 

Overall, we have to mention that on the described scenario, we initialize the confidence parameters 

on a very strict manner in order to optimize the degree of the precision of the indicated cases, 

displaying only few of them but with very high precision. However, moving towards the scenario of the 



 
 

29 

 
The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

exhaustive monitoring, we should relax the respective parameters and as result acquire more alerts, 

which aims at maximizing the recall. 

Last but not least, regarding the traffic light output of the product we can visualize the different 

indicated predictions returned from smart sampling routine based on the taxonomy differentiation 

between the predicted category and the declared one (as mentioned in D3.3). For instance, cases that 

have been indicated as alerts from the smart-sampling algorithm and predicted from the classification 

model as winter crops but have been declared as fallows can be characterized as high-risk alerts, while 

other cases that the higher level of prediction and declaration is the same, as medium-risk alerts. 

3.1.2.3 Grasslands Mowing Events Detection  

Several of the following results presented in 2021 AGU Fall Meeting (Kontoes, Charalampos; 

Tsardanidis, Iasonas; et al. "Deep Learning for Event Detection on Grasslands", B42C-07 presented at 

2021 AGU Fall Meeting, 13-17 Dec. https://doi.org/10.5281/zenodo.5995583) 

Data Fusion 

In order to detect abrupt changes on grasslands, we need uninterrupted optical imagery time-series. 

Nevertheless, the continuity of the Sentinel-2 time-series is often hindered by intense cloud coverage, 

which is even more of an issue for Northern European countries, such as Lithuania. In order to tackle 

this problem, we applied a Deep Learning Architecture based on Recurrent Neural Networks that uses 

as inputs Sentinel-1 Synthetic Aperture (SAR) data as presented in D3.3, which are weather 

independent, and the available Sentinel-2 data that are characterized as cloud free observations. Our 

goal is to exploit the available Sentinel 1 information, on the pixel level, which are provided with a 

constant time step, and the ability of RNN architectures to track temporal patterns, in order to export 

continuous and dense NDVI time series. The performance evaluation was conducted on random time 

steps, in which we have artificially hidden the actual NDVI values. Results on the Mean Absolute Error 

(MAE) and Mean Squared Error (MSE) are visualized in Figure 27 below, displaying the difference 

between using our fusion method and a baseline linear interpolation. The proposed methodology 

presents significantly better performance, with a mean MAE 0.0279 and mean MSE 0.0017 compared 

to 0.025 and 0.0071 of the interpolation method. 

https://doi.org/10.5281/zenodo.5995583
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Figure 27: MAE and MSE acquired on randomly hidden NDVI values  

Furthermore, preliminary results of our data fusion methodology showed us that this ancillary routine 

is at place to provide smooth time series with small errors and significantly high correlation compared 

to the actual measurements, independently of the area (Figure 28).  

 
Figure 28: Data Fusion Performance on Areas I and II 

Moreover, the S1/S2 data fusion pre-processing step, is able to eliminate the noise coming from 

individual cloudy cases that preprocessing cloud masks were not able to detect, something that 

especially for the mowing detection task consist a major problem since these abrupt changes can be 

erroneous identified as potential mowing events (see Figure 29). 
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Figure 29: Data Fusion Routine is able to eliminate potential noise coming from non-detected cloud 

measurements 

Grasslands Mowing Events Detection 

A mowing event usually can be identified from a sudden drop of the NDVI values and a simultaneous 

increase in the respective SAR bands. For this task, we implement a similar DL architecture with the 

previous fusion case described above. An RNN based model that uses as inputs the new artificially 

created NDVI time series of a fixed time step, along with the S1 data (backscatter and coherence) tries 

to identify the 6-day timeframe (WHEN) of an event happened. Subsequently, from the latter and with 

the usage of the relative mowing regulations depending the type of the grasslands, we can infer the 

occurrence of an event (IF) took place and as a result, the farmers conformity. 

  
Figure 30: Mowing Event Detected as result of sudden NDVI drop 

Results are evaluated parcel wise (since NPA evaluations are addressing to parcel level too) by applying 

majority voting on initial results extracted on the pixel level. From the scatter plot in Figure 31 we can 

see that there is a high correlation between predicted and reference date (expressed in Days Of Year), 

pointing out that in general we are able to identify the respective mowing events precisely enough. 

Specifically, we can see that in the majority of the cases, the events are detected within a range of less 

than 12 days, which is a gap of two successive Sentinel acquisitions, and we assume this is due to the 
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subsequent time shifting of the new exported NDVI measurements, after data fusion step described in 

D3.3. 

 
Figure 31:  Reference day of the year (DOY) for the mowing events and the DOY predicted by the model 

Despite that defining of the exact date of an event can be crucial, it is much more important to monitor 

if the events took place within a predefined time period, to answer the compliance requirements of 

the farmers. For that reason, using the respective outputs of the estimated timeframes of mowing 

occurrences, we can infer the results in the level of conformity by simply applying the respective 

regulations regarding the grassland type and the period that an event has been identified. Figure 32 

below presents the model’s performance for the two areas. It should be noted here that for the Overall 

Accuracy metric for 'when model’, we considered correct any prediction that was identified one 

acquisition before or after the actual event. 
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Figure 32: Accuracy assessment of event occurrence for the evaluated parcels for both cases  

The performance is satisfactory for both cases and areas. For the case of conformity, the problem is 

more straightforward and, thus, we achieve a higher Overall Accuracy compared to the detection of 

the exact time of events. However, the performance in terms of Cohen Kappa Coefficient is not 

optimal, since compliant some cases are neglected due to the extensive cloud coverage throughout 

the year.  As we mentioned also in D3.3, the actual percentage of non-compliant cases is approximately 

5% of the total declarations. On cases of sparse NDVI time-series, the model presents low sensitivity, 

since it is not able to pinpoint any explicit drop of the NDVI, which characterizes an event. As a result, 

many compliant cases are characterized wrongly as non-compliant. These are the cases we are trying 

to eliminate with the addition and the optimization of the aforementioned data fusion routine in the 

entire pipeline. 

Finally, yet importantly, by using the samples exported using the intersection of SE4CAP results and 

the respective validations we have from the NPA, we assess our methodology, on compliance level, for 

5 different validation areas all around Lithuania (Figure 33). Similarly, we notice that the metrics are 

quite high for almost all areas. We observe, though, a less than optimal performance for area 3 and 

area 1, where we had a rather sparse time-series due to extended cloud coverage.  

Moreover, Table 5 presents precision, recall and F1 score for both classes. The relatively low precision 

(UA) of the non-compliant cases is due to the cloud coverage issue mentioned as explained earlier.  
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Figure 33: Accuracy Assessment for every sampled area 

 

Table 5: Classification Report for all five sampled areas 

 UA PA F1-Score Support 

Non-Compliant 0.45 0.64 0.53 1106 

Compliant 0.92 0.84 0.87 5164 

Macro Avg. 0.68 0.74 0.70 6270 

Weighted Avg. 0.84 0.80 0.81 6270 

Overall Accuracy   0.80  

 

3.1.3 Limitations and Next Steps 

3.1.3.1 Analytics on Vegetation and Soil Index Time-series  

Minimum soil erosion 

The main limitation of the methodology, as it has been also highlighted in the results, is the frequent 

presence of cloudy pixels. Thus, the number of cloud-free images is dramatically reduced resulting a 

dwindling number of data to be analysed.  The preliminary version of the algorithm works well on 

identifying soil cover. However, it does need improvement to increase the overall accuracy. Next steps 

include the exploration of the effectiveness of the Data Fusion methodology presented in D3.3 in gap 

filling of SAVI time series. The usage of this product will create denser time-series, giving the potential 

for a more accurate analysis and identification of bare soil. The future work will also focus on testing 

more complex threshold methodologies, using multiple vegetation indices as well as S1 data to 

alleviate the cloud coverage issue. Finally, given that we will acquire annotated data (either from the 

NPA or by generating them, through blind photointerpretation) we are planning to experiment with 
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machine learning algorithms, to address the issue of thresholding techniques and further enhance the 

algorithm’s performance. 

Runoff Risk Assessment for the Reduction of Water Pollution in Nitrate Vulnerable Areas (GAEC 1/ SMR 

1) 

The runoff risk assessment algorithm takes into consideration the calculation of the water proximity 

for each vertex of the polygon. It becomes apparent that this computation increases the time 

complexity, especially for the current business case, as the number of parcels is very high. We are 

planning to optimize the time complexity by exploiting the parallel processing procedures. A future 

work will focus on generating useful information and improving runoff risk estimation by introducing 

more sophisticate modules to the algorithm, such as the aspect of the parcel, to improve the runoff 

risk estimation. Towards that direction, the calculation of RUSLE may also be revised. 

Stubble Burning Identification 

As already mentioned in D3.3 the main limitation in the BC of Lithuania is the extensive cloud 

coverage, which results in sparse NBR time-series. To restrict the impact of this phenomenon, we are 

planning to explore the effectiveness of the Data Fusion methodology presented in D3.3 in gap filling 

of NBR time series. Another issue was the lack of validation data. As it has already been mentioned, 

we are going to use this baseline methodology as a tool to manually generate an annotated dataset, 

through blind photointerpretation of three experts. Finally, we are planning to enhance the existing 

methodology (with more rules in multiple s1/s2 products) and implement alternative ones as well as 

apply them on the pixel level and not on parcel level as of now, producing results with higher detail 

(e.g. fully damaged, partially damaged and no damage). 

Harvest Event Detection 

Similarly, limitations and future work as in case of Stubble Burning Identification product, are applied 

also here. The cloud coverage issue will be addressed as well with the incorporation of supplementary 

S1 data and the threshold-based methodology will be enhanced with more input features, such as 

other vegetation indices. 

3.1.3.2 Cultivated Crop Type Maps (CCTM)  

In this deliverable, we provided a preliminary version of this product and the results are very promising. 

However, difficulties regarding the accuracy of the classification model and efficiency of smart-

sampling algorithm emerged. The RF model struggles to identify some specific crop type. A major issue 

in the Lithuania BC is the extensive cloud coverage which does not allow for clean and smooth spectral 

signatures, which is of a high importance on the current approach. As a first step, we are going to 

explore the Data Fusion product (presented in D3.3) for gap filling in other crop types and Sentinel-2 

indices, as well as bands, and also generate a plethora of new indices to enhance the feature space. 

Moreover, implementation of DL architectures that are more robust and resilient to cloud coverage, 

and do not usually require any pre-processing too, will be considered. 

Another limitation here is that, since we are using aggregated statistics on the parcel-level, we do not 

exploit the spatial context during the modelling process. Therefore, in the future, we will focus on ML 

and/or DL approaches that exploit both temporal and spatial characteristics (e.g. TempCNNs) and we 

may work on the pixel level, in order to improve the classification performance and also expand in 

even more crop types.  

The aforementioned actions are expected to improve the classification performance, and 

consequently, this will also have an impact on the accuracy of the smart-sampling methodology. 
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Finally, based on the user’s feedback and moving towards exhaustive monitoring, multiple variations 

of the smart sampling algorthim may be evaluated. 

3.1.3.3 Grasslands Mowing Events Detection  

Taking into account the results depicted in the previous sub-section, the main problem we have to deal 

with again, is that of extensive cloud coverage that characterizes Lithuania and in general Northern-

European countries. Frequent cloud appearance throughout the year results in sparse NDVI time-series 

and obvious consequences in the performance of the mowing event monitoring algorithm. The 

development and the optimization of an efficient data fusion method is of high significance in order to 

alleviate the problem described and increase the accuracy of the successive mowing detection model. 

For that reason, continuous update on the current state-of-the-art regarding S1/S2 fusion 

methodologies is necessary in order to exploit S1 (coherence and backscatter) data the best way 

possible. Hence, it will be able to track as many as possible of the mowing events, and subsequently 

fine-tune our models towards the improvement of the precision of the characterized non-compliant 

cases. Moreover, by getting rid of cloudy measurements, which is translated also in a NDVI drop, we 

are about to reduce the percentage of false positive mowing events detected due to sudden drop of 

the NDVI. 

Moreover, validation data regarding the timestamps of the mowing events is one of the main 

restrictions we have faced until now. NPA has provided only validation data with regards to compliance 

or not, and not the timeframes that the mowing events took place. The acquisition of more validation 

mowing event timestamps is of utmost importance for both training and validating our models. It is in 

our current plans to design a more integrated and complete photo-interpretation action in order to 

generate more such instances, with supplementary incorporation of rapid revisit imagery and VHR 

data.  

Finally, limitations also appeared in the discrimination of potential grazing events. These are cases 

of scattered subtle changes in grasslands areas, mainly for animal husbandry reasons. With Sentinel-2 

resolution (~10 m) is impossible to identify changes of this magnitude. The possibility of an integration 

of VHR imagery on operation level in the future will allow us to reconsider the enhancement of a 

product answering also this very specific user requirement. 

3.2 BC2: Monitoring multiple environmental and climate requirements of CAP – Cyprus 

3.2.1 Pilot and samples description 

3.2.1.1 Analytics on Vegetation and Soil Index Time-series  

Retrieve Analytics and Aggregated Statistics on custom Areas using GIS querying on the top of the 

DataCube 

The methodology behind the analytics retrieval and the statistics was described in depth in D3.3. As in 

the previous business case, this service can be particularly useful for the paying agency of Cyprus, 

namely CAPO, assisting in the evaluation of the outcomes of the different products and services 

provided for CAP monitoring purposes (e.g. Stubble Burning Identification, Minimum Soil Coverage, 

Smart Sampling, etc.), which have been described in detail in D3.3. 

Minimum Soil Cover 
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The methodology for detecting a minimum soil cover over parcels to enhance protection of soil against 

erosion is described in detail in D3.3. In order to validate the results of the methodology, CAPO 

provided a sample of 2866 parcels, which have been cross-checked via Remote Sensing. Specifically, 

only 18 of them found to be non-compliant.  Figure 34 presents the spatial distribution of the 

aforementioned fields. 

 
Figure 34: Soil Erosion Validated Samples: Compliant (green) Non-Compliant (red) 

Runoff Risk Assessment for the Reduction of Water Pollution in Nitrate Vulnerable Areas 

To answer the GAEC 1 and SMR 1 requirement, a runoff risk assessment for the reduction of water 

pollution in nitrate vulnerable areas has been developed, which takes into account the proximity to 

the closest surface waters. The related methodology is analysed in D3.3. The validation set provided 

by CAPO includes 8427 parcels that were checked for compliance of GAEC 1 rule. However, the current 

methodology cannot exploit this validation dataset, since it requires the hydrographic network as 

input, which was of extremely poor quality in case of Cyprus and could not be considered as valid. 

 
Figure 35: GAEC 1 non-compliant cases (red) and Nitrate Sensitive Areas of Cyprus (yellow) 

Natura 2000 Hotspot Detection 

The methodology regarding the Natura 2000 Hotspot Detection algorithm is described in depth in D3.3. 

As for the validation procedure of this data product, CAPO did not provide any labelled data, regarding 

illicit activity inside Natura 2000 regions. Due to the absence of any insight about the activity in Natura 

regions, the results of the algorithm were validated intuitively using photo-interpretation in different 

areas throughout the country.  

Stubble Burning Identification 
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The methodology for the Stubble Burning Identification is a threshold-based technique and it is fully 

described in D3.3. For the evaluation of the algorithm’s performance, we used a sample of 415 

observations, located into two small regions (Figure 36), where many neighbouring parcels got burnt 

simultaneously, probably during small wildfires. The wildfires took place at 20/05/2020 (the right one 

on the map) and 20/06/2020 (the left one on the map). 

 

 
Figure 36: Stubble Burning Validation Samples 

 

3.2.1.2 Cultivated Crop Type Maps (CCTM)  

he methodology of the Cultivation Crop Type Map product for Cyprus is described in detail in D3.3. For 

the validation of the product, Sentinel-1 and Sentinel-2 images from the October of 2018 until the July 

of 2019 were used as inputs. Specifically, for every evaluated field, a sample of 10 random 

representative pixels extracted using the LPIS buffered geometries for all the s1/s2 band and indices 

referred in D3.3. A training dataset of more than 100,000 pixels referring to 13 crop classes and a 

validation one of a similar size were exported from 5 different sampled area across Cyprus territory 

(see Figure 37) and used for training the ML models and the evaluating their outputs. 
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Figure 37: Sampled Areas of Cyprus Validation Crops 

3.2.2 Validation results 

3.2.2.1 Analytics on Vegetation and Soil Index Time-series  

Retrieve Analytics and Aggregated Statistics on custom Areas using GIS querying on the top of the 

DataCube 

1. Temporal Statistics over an area. The temporal statistics exploit the time dimension as in the 

previous sub-task. As already mentioned before for the BC1, the usage of this tool enhances 

the CAP monitoring by providing useful information about the evolution of the vegetation 

throughout a user-defined time range. The example below (Figure 38) showcases the 

validation process for an alarm generated from a back-end process. Specifically, the alarm is 

related to non-compliance to GAEC 4 rules. Thus, users can effortlessly explore the SAVI and 

any other index in order to decide whether the alarm is false or not. Complexity of decision is 

reduced as the tool provides critical information in many dimensions.  
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Figure 38: SAVI for parcel flagged as non-compliant to GAEC 4 

 

2. Smoothed time-series. Except from investigating each parcel individually, smoothed time 

series can provide aggregated results for either a parcel or a group of them. Therefore, the 

mean or any other metric can be calculated and smoothed, aiming at providing noticeable and 

reveal patterns and trends throughout the years. Figure 39 illustrates the resamples biweekly 

NDVI for all parcels declared as barley, in Cyprus. 

  

 
Figure 39: Biweekly NDVI during two years for parcels declared as barley. 
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Minimum Soil Cover 

The algorithm for checking GAEC 4 rule performs quite well in detecting soil erosion in Cyprus having 

an overall accuracy of 98.71%. However, we identify correctly 2819 out of 2843 compliant parcels, but 

there are only 5 correct predictions out of 18 non-compliant parcels (Table 6). This results to an 

average recall of 63.5 % and a precision of 58.4%. Moreover, 5 parcels have been totally excluded from 

the evaluation process due to either extensive cloud coverage or their very small size. The overall 

performance of the algorithm can be considered quite satisfying, given the simplicity of this baseline 

threshold-based approach and the extremely high imbalance between the two classes. 

 

Table 6: Soil Cover for Soil Erosion Results 

  Predicted 

  Compliant Non Compliant  

 

Ground Truth 

Compliant 2819 24 2843 

Not Compliant 13 5 18 

 2832 29  

 

 

Runoff Risk Assessment for the Reduction of Water Pollution in Nitrate Vulnerable Areas (GAEC 1/ SMR 

1) 

The estimation and risk analysis for GAEC 1 and SMR 1 respectively requires a full hydrographic layer 

for the area of interest. Currently, there is a lack of such a layer in Cyprus as mentioned in 3.2.1.1, and 

thus, water proximity cannot be calculated. However, RUSLE estimation has been already completed 

and is depicted in Figure 40. 

 

 
Figure 40: RUSLE estimation 

 

Natura 2000 Hotspot Detection 

Natura 2000 Hotspot Detection algorithm is a threshold-based approach, as already mentioned in 

D3.3. The lack of a validation data does not allow for accurate evaluation, however, by manually 
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inspecting the predictions through photointerpretation, we observed a high performance in terms of 

recall. The vast majority of the identified events are correct, for both permitted and illegal actions 

inside Natura 2000 regions. Besides, it is worth mentioning that we apply here the same methodology, 

as the one described in the Lithuanian BC (BC1) for the harvest event detection. The results of the 

relative product (Figure 19) also indicate a quite good performance of the respective methodology. 

Figure 41 illustrates an example, where on the left side an illegal land clearing event is identified, and 

on the right side it is optically validated. 

 

 
Figure 41:  Land clearing event detected outside arable land parcel considered illegal practice 

Figure 42 presents all the land clearing events that were detected from the algorithm (black colour), 

inside the ‘Agia Aikaterini’ Natura site in Cyprus (brown colour). This dataset has been provided to 

CAPO to assist them in a photointerpretation procedure for generating validation data. Finally, by 

extracting the arable land parcels where activity is permitted, we can provide a final map containing 

the illegal activities inside Natura2000 Areas. 

 

 
Figure 42: Land clearing events detected in Agia Aikaterini Natura Site 

 

Stubble Burning Identification 

The methodology of the Stubble Burning Identification is based on two thresholds of NBR and dNBR 

time-series. The accuracy depends highly on the values of these thresholds. For the proposed values 

(see D3.3), we classify correctly 264 out of the 439 burnt parcels, which is translated to a recall 60.13%. 

It is worth mentioning that for each of these cases, we identify the exact timeframe of the event. 

Moreover, out of the 226,735 examined fields for the cultivation period of 2019, we identified 3,978 

burnt areas (approximately 1.8%). We expect that this percentage corresponds to a realistic scenario, 
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however we do not have any relative feedback yet. Therefore, the thresholds can be modified in order 

to be in accordance with the expected ratios of burnt fields.  

Figure 43 visualizes one of the validation areas (red-coloured outline) with burnt parcels (left side). On 

the right side, we highlight the output of the Stubble Burning Identification algorithm compared to the 

validation data (red-coloured outline). In blue colour are represented the parcels declared as arable 

land and in green those declared as fallow land. 

 
Figure 43: Parcels detected to be burnt compared to the provided validated data (validations are with red, 

arable lands are with blue and fallow lands with green) 

As observed above, the algorithm performs relatively well on detecting burnt areas. Moreover, the 

algorithm succeeds to provide accurate predictions on detecting the date when each event happened. 

In Figure 44, multiple neighbouring parcels are found to be burnt at a different time, on consecutive 

acquisitions. These cases are detected from the algorithm together with the corresponding date of 

event, both of which were validated by experts through photointerpretation. 

 
Figure 44: Neighbouring parcels found burnt by the algorithm on consecutive acquisitions (arable lands are with 

red colour and fallow with green) 

One additional service that we provided is the exploitation of the current algorithm, with a view to 

track the burnt areas from the devastating wildfire took place last summer (July 2021) near Arakapas 

village in the Limassol. That was a first crash-test of the robustness of our methodology in the general 

context of Burnt Scar Mapping, where CAPO asked us to apply our model to assist them in the 
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detection of damaged cultivations in the area of interest (AOI). Specifically, initially we exported a 

raster layer of the estimated pixels detected as burnt, and subsequently based on the percentage of 

the burnt pixels inside each parcel’s geometry, we generate a map layer with the estimated damage. 

The latter was categorized as “Destroyed”,”Damaged”, ”Partially Damaged” or “No Damaged” based 

on pre-defined thresholds related to the percentage of burnt area, as well as a “Not Assessed” label in 

cases where clouds were detected. In Figure 45 we present this output map where the deeper the red, 

the greater the damage was. Overall, user’s testimony about this product was very satisfying, claiming 

that we were able to provide them with quite good results even in the level of discrimination between 

“Destroyed” and “Damaged”, with high accuracy, more precise in comparison to the respective ones 

from Copernicus Emergency Management Service1 (EMS) activation and European Forest Fire 

Information System2 (EFFIS) (Figure 45). However, few were the cases that missed, especially related 

with the existence of greenhouses in the AOI, which probably should have been marked and excluded 

from the evaluation in the first place. 

 

 
Figure 45: 2021 Cyprus Wildfire damage layer (left), comparison of NOA results with EMS (right) 

 

3.2.2.2 Cultivated Crop Type Maps (CCTM)  

In order to evaluate the performance of the SVM hierarchical classification model we trained multiple 

models throughout the cultivation period, from early March until the end of June of 2019. Similar with 

the Lithuanian case, the accuracy is increasing gradually as we include more and more acquisitions in 

the feature space, reaching an optimal performance at the end of June when the cultivation period 

has been completed. Figure 46 indicates the increase of the Overall Accuracy and the Cohen Kappa 

coefficient for all the 13 crop classes at the lowest level of taxonomy, in which we performed the 

 
1 https://emergency.copernicus.eu/ 
2 https://effis.jrc.ec.europa.eu/ 

https://emergency.copernicus.eu/
https://effis.jrc.ec.europa.eu/
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validation analysis. We notice that although both metrics do not reach significantly high levels, the 

Kappa coefficient metric presents a quite satisfactory performance, based on limitations and 

particularities of this case (explained in D3.3).  

 

 
Figure 46: Cyprus Classification Performance over Cultivation Period 

As mentioned in the methodology section of D3.3, the fallows have been assessed independently. 

Specifically, for the rest of the crop classes we have applied a hierarchical ML model approach (based 

on SVM) in order to exploit information issued from the different layers of crop taxonomy in Cyprus, 

and map the crops accordingly. Conversely, for the very specific case of fallows, we applied an 

individual binary SVM classifier on the highest level of the taxonomy to detect only a very small portion 

of wrong declared fallow cases that the model is very confident. 

In Table 7 below, we can see the results, in the pixel-level, acquired at the end of the cultivation period 

on the lowest level of crop taxonomy, using the hierarchical ML model, which presents a rather 

mediocre performance. The SVM classifier cannot easily distinguish the different crop types resulting 

in an accuracy of only 66%. However, for the case of potatoes and vineyards, we observe the highest 

accuracy, in term of all the metrics, since they have more explicit and clear spectral signatures. As it 

has been mentioned (section 4.3.1.2 in D3.3), in Cyprus most of the examined crops share very similar 

spectral characteristics, making the crop identification a very challenging task. Moreover, the small 

parcel size of the area, which results in a high number of mixels, complicate even more the problem. 

Thus, we aggregate the predictions in the parcel level, which results in a significant increase in all the 

metrics (more than 5%), as we can see from Table 11. 

 

Table 7: Classification Report of the main Hierarchical model for the rest classes based on the predictions 
provided at the late June 

 UA PA F1-Score Support 

Durum Wheat 0.65 0.55 0.60 21430 

Barley 0.65 0.86 0.74 36020 

Potatoes 0.85 0.82 0.83 12630 

Olive Trees 0.58 0.64 0.61 7980 

Citrus Fruit Trees 0.73 0.65 0.69 2110 

Vineyards (for wine) 0.71 0.79 0.75 9400 

Permanent Grasslands 0.78 0.56 0.65 2050 
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Vegetables Mixture 0.34 0.19 0.24 2050 

Traditional Trees 0.55 0.55 0.55 3140 

Soft Wheat 0.43 0.15 0.22 9550 

Triticale 0.82 0.33 0.48 2220 

Deciduous-Fruit Trees 0.31 0.22 0.26 1730 

Macro Avg. 0.62 0.53 0.55 110310 

Weighted Avg. 0.65 0.66 0.64 110310 

Overall Accuracy   0.66  

Kappa   0.57  

 

Tables 8 and 9 depict the Producer and User Accuracy respectively (on the parcel level), as well as the 
most frequent cases of misclassification between the actual truth and the predictions. Specifically, the 

producer accuracy table ( 

 

 

 

 

 

 

 

 

Table 8) indicates the crop type distribution of the false negative instances, namely what crop types does the 
model predict when it makes a mistake, for each one of the different classes. For some specific crop types, such 

as Traditional Trees and Olive Trees, a confusion is expected since they belong to the same crop family and 
share similar characteristics. However, this problem will not have any impact in the subsequent monitoring of 
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crop diversification requirements, since these do not apply on permanent cultivations. Furthermore, by quickly 
inspecting  

 

 

 

 

 

 

 

 

Table 8, one can notice that barley is the class that is predicted systematically, when it fails to predict 

correctly. Barley has the highest samples in the dataset, and even more, the spectral signatures of 

most crops are very close with each other (see section 4.3.1.2 in D3.3). Therefore, the ML model is not 

very confident and tends to allocate most of the confusing cases in the barley class.  

The user accuracy table (Table 9) indicates the crop type distribution of the false positive instances, namely 
what is the ground truth of the predictions that the model makes a mistake. Opposite to the  

 

 

 

 

 

 

 

 

Table 8, we notice here several crop with relatively high accuracies.  However, we can notice here the 

same pattern with regards to what confuses the model. Most of the errors concern the barley crop 

type. For example, from all the predicted Durum Wheat instances, 33% were in fact Barley. This can 

be attributed also to the high number of barley samples in the training dataset. 
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Table 8: Cyprus Producer Accuracy Table 
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Table 9: Cyprus User Accuracy Table 

 
 

Below is presented the binary SVM’s performance in fallow discriminator of the validated cases. Figure 

47 displays the F1 score metric only for the “Not fallow” class, for the multiple models throughout the 

time, which presents an incremental behaviour. The highly imbalanced dataset together with the 

spectral similarities that fallows share with multiple other crop families makes also this task quite 

difficult. However, after the last training, the model is able to achieve 35% precision out of the 248 

actual wrongly declared cases existed in the validation dataset (see Table 10).  For us, this is a very 

good and auspicious preliminary result, since fallow cases are a very special case, with not at all very 

clear spectral signature, of very high discrepancy, very similar to the rest of the crop types.  

 

 
Figure 47: Fallows model Classification Performance over Cultivation Period 

 

Table 10: Classification Report of the Fallows binary model based on the predictions provided at the late June 

 UA PA F1-Score Support 

Not-Fallow 0.35 0.14 0.2 248 
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Fallow 0.93 0.98 0.95 2775 

Macro Avg. 0.64 0.56 0.57 3023 

Weighted Avg. 0.88 0.91 0.89 3023 

Overall Accuracy   0.91  

Kappa   0.16  

By taking into account the aforementioned, for the declared fallows that have been identified as “not 

fallow”, we predict their crop type using the main Hierarchical ML routine. Overall, in Table 11 and 

Figure 48, the final classification results are presented for the finest level of the crop taxonomy.  These 

are aggregated results into the parcel level, which results in significant improvement compared to 

pixel-based classification (Table 7). 

Table 11: Classification Report on the finest level of crops taxonomy at late June 

 UA PA F1-Score Support 

Durum Wheat 0.66 0.59 0.62 2143 

Barley 0.61 0.86 0.71 3602 

Potatoes 0.83 0.84 0.83 1263 

Olive Trees 0.62 0.70 0.66 798 

Citrus Fruit Trees 0.81 0.69 0.74 211 

Vineyards (for wine) 0.71 0.86 0.78 940 

Fallow 0.93 0.82 0.87 3325 

Permanent Grasslands 0.89 0.61 0.72 205 

Vegetables Mixture 0.38 0.19 0.25 205 

Traditional Trees 0.63 0.61 0.62 314 

Soft Wheat 0.48 0.14 0.21 955 

Triticale 0.91 0.36 0.52 222 

Deciduous-Fruit Trees 0.41 0.20 0.27 173 

Macro Avg. 0.68 0.57 0.60 14356 

Weighted Avg. 0.71 0.71 0.70 14356 

Overall Accuracy   0.71  

Kappa   0.65  
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Figure 48: F1 score based on the predictions provided at the late June on the finest level of crops taxonomy 

 

Finally, classification in higher level of taxonomy can be sufficient to address some of the requirements 

(see D3.3). Thus, using the respective taxonomical categorizations (see Figure 30 “Crop Taxonomy for 

Cyprus” in D3.3) we can extract the results for the most general crop families (see Table 12 and Figure 

49). The performance there, it is very satisfactory, reaching an Overall Accuracy of 86% and Kappa 

Cohen Coefficient of 0.8, respectively. 

 

Table 12: Classification Report on the middle level of crops taxonomy at late June 

 UA PA F1-Score Support 

Tree Crops 0.80 0.78 0.79 1496 

Vines 0.71 0.86 0.78 940 

Cereals 0.89 0.94 0.91 6922 

Broadleaf Crops 0.83 0.84 0.83 1263 

Vegetables 0.38 0.19 0.25 205 

Grasslands 0.89 0.61 0.72 205 

Fallow 0.93 0.82 0.87 3325 

Macro Avg. 0.77 0.72 0.74 14356 

Weighted Avg. 0.86 0.86 0.86 14356 

Overall Accuracy   0.86  

Kappa   0.80  
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Figure 49: F1 score based on the predictions provided at the late June on the middle level of crops taxonomy 

 

3.2.3 Limitations and Next Steps 

3.2.3.1 Analytics on Vegetation and Soil Index Time-series  

Minimum Soil Cover  

The main limitation in the Business Case of Cyprus is related to the small size of parcels. The pixels 

included in the parcels may be not enough for the algorithm to decide whether there is or not a 

minimum soil cover. Another issue here is that despite the satisfying amount of validation data, its 

high imbalance does not allow for an accurate evaluation of the algorithm’s performance. Therefore, 

in the near future we will try to collect more non-complaint cases, either with photointerpretation or 

from OTSCs performed by CAPO. Since the main methodology is the same here as in the Business Case 

of Lithuania, next steps include also development of more sophisticated threshold-based algorithms, 

using multiple vegetation indices as well as S1 data to alleviate potential cloud coverage, or even 

machine learning techniques given that the required annotated data can be collected. 

 

Runoff Risk Assessment for the Reduction of Water Pollution in Nitrate Vulnerable Areas (GAEC 1/ SMR 

1) 

On the preliminary version of run-off risk assessment for the BC2, RUSLE estimation has been 

calculated. Nevertheless, there was no potential for a risk analysis as the hydrography layer provided 

to us has insufficient data. The latter considered to be so far the main limitation. Therefore, next steps 

include the computation of the risk analysis along with an evaluation of the results based on the 

dataset provided by the CAPO. 

 

Natura 2000 Hotspot Detection 
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As already mentioned in D3.3, the main limitation in the data product of Natura 2000 Hotspot 

Detection for Cyprus is the very small parcels and the lack of validation data. This means that a lot of 

pixels, in many occasions the majority of the pixels included inside parcels’ boundaries, are half inside 

the parcel and half outside (mixels). For this reason, the algorithm was developed on the pixel level to 

produce as accurate results as possible. The Natura 2000 Hotspot Detection algorithm, which detects 

land clearing events using NDVI from Sentinel-2 satellite images, yields satisfactory results so far. In 

the forthcoming months, Sentinel-1 weather independent images (coherence and backscatter) will be 

introduced to this data product, in an attempt to fill in gaps in the NDVI time-series caused by cloud 

coverage. Moreover, we are planning to develop more sophisticated rule-based approaches that use 

more vegetation indices. Finally, a manually annotated validation dataset will be produced in order 

to extract statistics and allow an accurate evaluation of the results.  

 

Stubble Burning Identification 

As already mentioned in D3.3 and above, the main limitation in the data product of Stubble Burning 

Identification for Cyprus is the very small size of the parcels. As a result, the algorithm, which is based 

on calculating the average values of pixels for each parcel, is prone to errors when performed on very 

small parcels. For this reason, the algorithm will be applied on the pixel level both to augment the data 

from each parcel and to produce results with higher detail (e.g. fully damaged, partially damaged 

and no damage). Next steps will also focus on improving the performance of the algorithm by testing 

different thresholds or different approaches and by including more Sentinel-2 indices. 

3.2.3.2 Cultivated Crop Type Maps (CCTM)  

On this preliminary version of Crop Type Mapping for the BC2, we provided some initial results for the 

particular case of Cyprus. As we saw, it is a very challenging case and the discrimination on the lowest 

level of crop taxonomy, required for the monitoring of Greening regulations, is not optimal yet. The 

main problem of Cyprus is the small size and the long and narrow shape of the parcels that do not 

assist in the extraction of representative spectral characteristics for the various crop types. Work 

should be done in order to improve the level of performance and be at place to provide acceptable 

results that will allow us to assimilate them in the smart-sampling algorithm. The adaptation of a pixel-

wise approach is essential and we are also planning to assess other algorithms (e.g ML/DL 

architectures) in order to fully exploit the geo-spatial information of the area, as well as to decide on 

the integration of additional visual indices into the model’s input feature space. Moreover, the smart 

sampling algorithm will be modified accordingly in order to satisfy the specific BC requirements. 

Moreover, the possibility of an integration of VHR imagery on operation level in the future, will allow 

us to consider the fusion of supplementary image sources with a view to improve the final results. Last 

but not least, further thorough evaluation and improvements will be done for the very special case 

of fallows and the respective methodology. In the current scenario, we designed an approach that is 

able to identify other crop cases that have been declared mistakenly as fallows. Finally, we have to 

examine also the opposite case as well since it is equally frequent to happen according to our validation 

data, where we need to identify the actual fallows that have been declared wrongly from the 

applicants as another crop type. 
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3.3 BC3: Monitoring the condition of soil – Belgium 

3.3.1 Pilot and samples description 

The Flemish business case focuses on deploying ENVISION service for topsoil Soil Organic Carbon 

Monitoring in Flanders, Belgium. Currently, the state of agricultural soils is checked by performing soil 

samplings and conducting laboratory examinations. However, these methods do not provide a 

continuous overview of soils' state and require significant effort, time, and resources to be committed. 

Consequently, these types of controls have to be significantly reduced and replaced with a more 

automated process. The business case is implemented in Belgium, within the Flemish region, involving 

LV, the Flemish Department of Agriculture and Fisheries and Paying Agency, which is in Flanders' the 

official PA in charge of the financial support for agriculture and the implementation of CAP. EV ILVO 

will assist LV, and is responsible for developing the data products that can support the provision of the 

services. Additionally, in close collaboration with EV ILVO to perform the soil campaign and assess the 

soil organic carbon model performance. 

3.3.1.1 Methodology 

To achieve user requirements and other non-functional requirements related to service scalability, we 

define a methodology that can enable current scientific research outcomes and deliver soil organic 

carbon products on a large scale. More specific: 

• In Phase One, the main goal is to develop a Cloudless Collection of Bare Soil Pixels. We filter 

the original collection by applying cloud masking. After the bare soil pixels were selected by 

masking using computated indices that can detect green and dry vegetation and high soil 

moisture content that can affect the soil spectrum shape. We also filter the collection layer by 

using the ESA Worldwide land cover mapping. Alternatively, we can use the Land Parcel 

Identification System (LPIS) parcels provided by LV in the masking process. However, that 

requires more computational power and the ESA Worldwide land cover mapping covers 

equally the existing croplands and the grasslands. 

• In Phase Two, we perform the modelling and there, the goal is to create a mapping between 

the extracted reflection signatures coming from the Bare Soil Collection and the SOC 

measurements. 

• In Phase Three, we apply the deployed model to all pixels belonging to larger areas, at regional 

(Envision, BC3) or even national scale. At this phase, we aggregate the SOC from pixel level to 

parcel level, and critical decisions are made on presenting the information to the service 

consumers or the end-users. 

• In Phase Four, we perform the technical validation and service evaluation, which means 

validating a complete solution or a segment of a solution that is about to be or has already 

been implemented to determine how well a solution meets the business needs and delivers 

value to the organization. 

• In Phase Five, you need to evaluate and make improvements, considering how the changes at 

each phase affect the product in other phases and the service itself. It's a critical phase because 

it supports traceability and monitoring, which means approving and assessing changes to 

product information to manage it throughout the business analysis effort.



 
Figure 50: Significant methodological phases 

 

 



The developed technological environment supports the implementation of the aforementioned 

methodological phases and provides the needed scalability to leverage Copernicus data resources at 

the Regional, National and European level. It relies on the Google Earth Engine system, the Colab 

notebook collaboration environment and PYCARET. PYCARET is an open-source, low-code machine 

learning library in Python that automates machine learning workflows and supports data preparation, 

model training, hyperparameter tuning, analysis and interpretability, and model selection.  

3.3.1.1.1 Satellite image acquisition and pre-processing  

The collection consists of 4598 images of L2A that covered the Flemish region from 2018 until the end 

of April 2021. The first step was to create a collection of S2 images using the GEE Python APIs to access 

Data Catalog products (Sentinel 2 MSI, Level 2A) following the latest Legal notice on the use of 

Copernicus Sentinel Data and Service Information.  

 
Figure 51. Google Earth Engine (GEE) system architecture diagram. GEE relies on a Client/server programming 

model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 52. Together with Colab and Pycaret, GEE creates a robust technological framework that allows 
collaboration, ensures scalability, and supports productivity.  
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To apply cloud masking, we make use of the S2-L2 bands: 

• MSK_CLDPRB 20 meters Cloud Probability Map (missing in some products) 

• MSK_SNWPRB 10 meters Snow Probability Map (missing in some products)  

• QA60 60m Cloud mask. 

And to identify the bare soil pixels, we created and applied a set of extra masks using the NDVI, VNSIR 

and NBR2 indices. 

 

Indices Formulas Upper and Down thresholds 

suitable to identify for Bare 

Soil 

NDVI (B08-B04)/(B08+B04) >-0.25 and <0.35 

NBR2 (B11-B12)/(B11+B12) >0 and <0.1 

VNSIR (2 * RED) - GREEN - BLUE) + (3 *(SWIR2 - NIR) >0.1 

Table 13: To identify the bare soil layer, we created and applied a set of extra masks using the NDVI, VNSIR and 
NBR2 indices. 

 
Figure 53. RGB Visualization of the bare soil synthetic layer. 

var cloudless_bare_soil_collection = ee.ImageCollection('COPERNICUS/S2_SR')  

    .filterDate(startDate, endDate)  

    .map(maskS2clouds) 

    .map(maskvlaams) 

    .map(maskCropland)  

    .map(addNDVI)  

    .map(addNBR2)  

    .map(addVNSIR)  

    .map(addBSI) 

    .map(addcount)  

   .map(maskNDVI)  

   .map(maskNBR2)  

   .map(maskVNSIR 

Figure 54. Part of the code in Java Script, describes the processing and masking steps applied to develop the 
Cloudless Bare Soil Collection.  

3.3.1.1.2 EO data processing and analysis workflow/ algorithms in an automated manner 
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Using the GEE Reducers3 and the Exporting Data4 ability, we generate raw data per sampling point 

(Figure 55). It's possible to automatically extract the completed value set without applying bare soil 

masking (by activating only the cloud mask function), supporting the data analysis without using the 

median values per band and sampling point. 

 
Figure 55. Reflection values per Sentinel 2 band, together with the computed indices and the image data. 

Sampling point 2. 

 
Figure 56. Visualization of reflection bands and indices for the sampling point 33. In total, we have 131 

reflection signatures for the period of May- 2018 until the end of 2021. Only 13 reflection signatures correspond 
to bare soil (10%). 

Within COLAB and PYCARET, we perform data preparation, model training, hyperparameter tuning, 

analysis and interpretability, and model selection.  

 

We tested regression models within the first iteration of our product developments. As presented in 

Table 14, we create training, test and validation sets within the first iteration that use the median value 

 
3 Reducers are the way to aggregate data over time, space, bands, arrays and other data structures in Earth 
Engine. The ee.Reducer class specifies how data is aggregated. The reducers in this class can specify a simple 
statistic to use for the aggregation (e.g. minimum, maximum, mean, median, standard deviation, etc.), or a more 
complex summary of the input data (e.g. histogram, linear regression, list) 
4 You can export images, map tiles, tables and video from Earth Engine. The exports can be sent to your Google 
Drive account, to Google Cloud Storage or to a new Earth Engine asset. 
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per band per sampling point. We follow a strategy of 80%, 20%, 10% and random sampling, which 

means 10% of the sampling points consist of the unseen data set, and from the 90% of the seen data 

set, the 80% consist of the training set and 20% the test set. As presented in Figure 58, we compare 

modelling results from a set of ML algorithms, and we proceed further to model tuning for algorithms 

that deliver the best results. 

 

Setup() function automatically pre-processing and sampling in the background. It operates on default 

parameters, but these parameters can be changed according to one's requirement. For more, see 

https://towardsdatascience.com/machine-learning-made-easier-with-pycaret-907e7124efe6 

 

 

 

 

from pycaret.regression import * 

envision =  

setup (data = data, target = 'OC',  

normalize= True,  

transform_target = True,  

feature_selection = True,  

remove_outliers = True,  

combine_rare_levels = True,  

rare_level_threshold = 0.05, 

 remove_multicollinearity = True,  

multicollinearity_threshold = 0.95) 

 

Figure 57. There are around 50 parameters that are to be fed into the setup() function.  
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Figure 58. List of available models  

 

 

Learning curve Feature Importance.  

 

 
Residuals Prediction errors 

Figure 59. Evaluation graphs for Bayesian Ridge Model 
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Figure 60. RF model has R2 of 0.26 on the validation set 

 

Figure 61. Comparing results for a set of models 

Models Seen data set 

Bayesian Ridge MAE: 0.2910 

MSE: 0.1548 

RF MAE: 0.3230 

MSE: 0.1822 

SVM MAE: 0.3014 

MSE: 0.1669 

MLP Regressor MAE: 0.27 

MSE: 0.13 

MAE: Mean absolute error 

MSE: mean squared error 

Table 14. The models' results use the median values per band for the Total Period May 18 – May 21.  

During the first iteration, all the models face difficulties handling SOC's mappings higher than 2.5. That 

is related to the fact that most of the collected sampling points (171 samples) take SOC values between 

0.8 - 1.8 (%/dry soil). Only a few samples (6) take values above 2.5%, which means we don't have a 

representative train sample to support a mapping within this region. Treating values higher than 2.5% 

as outliers is an option; however, that means models are not suitable for deployment on regions with 

different SOC values. 
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3.3.1.1.3 Analytical Methods – EO data products 

The deployment of machine learning models is the process of making models available in production 

where web applications, enterprise software, and APIs can consume the trained model by providing 

new data points and generating predictions. Normally machine learning models are built so that they 

can be used to predict an outcome (binary value i.e. 1 or 0 for Classification, continuous values for 

Regression, labels for Clustering, etc. There are two broad ways of generating predictions (i) predict by 

batch; and (ii) predict in real-time. In our case we predict by patch and we deploy the model to a 

synthetic layer of cloudless bare soil collection with median values per band and per pixel. We apply 

the selected deployed model to all pixels belonging to larger areas, at regional (Envision, BC3) or even 

national scale to develop the SOC products.  

 

var syn_layer_median = cloudless_bare_soil_collection.median() 

 

Developing a synthetic layer is a common practice in many top SOC mapping activities. It delivers 

benefits related to the simplicity of the process and the fact that it returns the max available coverage 

(see Figure 63). However, analysis results (see D.3.3 section 4.4.2.1.1 Phase One: Bare Soil 

Identification) have shown that the long term median reflection values are not always representative.  

 

 
Figure 62. SOC map covering West Flanders. Zoom window overlays a sample of agricultural parcels.  

 

In Figure 62. SOC map covering West Flanders. Zoom window overlays a sample of agricultural parcels.  

, results are presented in classes (Low, Medium, High) using crisp limits to support decision-making. 

However, the RMSE of all models receives values close to 0.5, which means the classification results 

face significant accuracy issues when the labelling receives values close to the crisp limits. Fuzzy logic 

and the uncertainty transfer to the membership functions can be an option, especially if we manage 

further to reduce the RMSE to values close to 0.25. 
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RGB visualization of the cloudless bare soil 

collection for May-2018 until May-2021 using 

the median values per band. 

RGB visualization of a cloudless bare soil collection 

from May-2018 until May-2019. 

  
RGB visualization of a cloudless bare soil 

collection from May-2019 until May-2020. 

RGB visualization of a cloudless bare soil collection 

from May-2020 until May-2021. The cloudless bare 

soil collection mainly does not cover the sampling 

point area due to clouds. 

Figure 63. RGB visualization of continuous-time period stacks of the cloudless bare soil collection area around a 
soil sampling collection point (point ID 33). 

 



 
 

64 

 
The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

3.3.2 Validation results 

To perform the validation, we apply the models to a validation set consisting of 10% of the sampling 

points (unseen). In Table 15. Validation results we provide the validation results for each model  

Models Unseen 

Bayesian Ridge MAE: 0.26 

MSE: 0.09 

RF MAE: 0.32 

MSE: 0.16 

SVM MAE: 0.32 

MSE: 0.25 

MLP Regressor MAE: 0.26 

MSE: 0.09 

MAE: Mean absolute error 

MSE: mean squared error 

Table 15. Validation results  

SOC Label Error Abs Error 

0.99 1.188 -0.198 0.198 

0.92 1.308 -0.388 0.388 

1.28 1.238 0.042 0.042 

1.63 1.392 0.238 0.238 

1.11 1.144 -0.034 0.034 

1.74 1.142 0.598 0.598 

1.19 1.058 0.132 0.132 

1.88 1.356 0.524 0.524 

0.92 1.136 -0.216 0.216 

1.21 1.392 -0.182 0.182 

1.37 1.258 0.112 0.112 

1.58 1.258 0.322 0.322 

1.1 1.382 -0.282 0.282 

3.13 1.694 1.436 1.436 

2.33 1.432 0.898 0.898 

1.27 1.066 0.204 0.204 

Mean SOC Sum of Label Sum of Error MAE 

1.478125 20.444 3.206 0.362875 

Table 16. Validation results with errors and calculated MAE, for the RF model.  

As presented in Table 13,Table 16. Validation results with errors and calculated MAE, for the RF model. 

and similar to other models, it rarely fits SOC higher than 2.2. That is a clear message, pointing to where 

we need to focus our improvement efforts. 
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3.3.3 Limitations 

This section will summarize the identified limitations of the first iteration, making references to the 

previous sections and in Deliverable 3.3 Data products initial report. We will try to classify them at the 

different phases. 

• Phase One: The most crucial product is the cloudless bare soil collection. We use vegetation 

and moisture indices; however, uncertainty exists on selecting the indices (which indices is 

suitable? Which combination of indices?) and the definition of the threshold limits (which 

range?). Even if many scientific papers suggest the optimal combinations of indices and 

thresholds, it remains a trial–error approach, which is not yet standardized by the Soil 

community. Quality controls are needed to ensure that the assessed pixels cover bare soil 

areas on a specific day. Smart and low budget ways are needed to ensure and verify the quality, 

maintaining the need for in situ data collection at a low level. 

• Phase Two and Three: We link the pixel reflections with the measured top Soil Organic carbon 

as explained in phase two. That means: we need to apply a specific soil sampling collection 

protocol to perform this link. 

o We reduce the available data sets because it's impossible to use existing collection 

samples and measurements that do not follow the same protocol. 

o We need to manage the uncertainty, errors etc., coming from the lab measurements, 

and we need to find ways to transfer that uncertainty to the modelling results. 

o We need to invest resources and increase the cost of new soil campaigns covering the 

agricultural areas. 

o We need to perform the soil campaigns on periods without cloud coverage. 

o We need to select soil samples on areas covered by bare soil and not vegetation. 

o We need to apply the model on bare soil reflections from different periods than the 

soil sampling collection. That means different lighting soil moisture, and vegetation 

conditions. 

o We need to consider how the farm management practices affect the top Soil Organic 

Carbon but mainly bare soil, moisture levels, etc. 

o We need to consider and deal with the different spatial resolutions of S2 bands and 

evaluate the influence of adjustment pixels on the pixels with direct spatial links with 

the soil sampling locations. 

o Soil campaign needs to provide results that generate a representative train and 

validation set, covering all expected SOC values. 

Even if there is a relation between S2 reflections and topsoil organic carbon, the 

mentioned points influence the mapping abilities. 

• Phase 4: Due to results with lower than the expected accuracy until now, our efforts were 

focusing mainly on how to improve the model, how to understand better the available data 

sets, how to improve our methodological steps and select the right technological tools to 

increase the ability for more iterations, more testing on different scenarios. That limited the 

time spent on further developing the service's business logic. Even if we have collected the 

end users' requirements, we have gained more experience in large-scale SOC modelling now 

and after the first iteration. That experience can support us design better ways to deliver the 

service and support the SOC monitoring for the CAP needs. 
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3.3.4 Next steps 

The following steps aim to improve the modelling results and will be finalized within Phase Five.  

 

Figure 64. Second iteration - Major improvements 

More specific: 

• For Phase One: We have already improved the ability to analyse the reflection values for each 

sampling point and link it with SOC measurements of the same pixel area. We also have tested 

after the first iteration new indices like the BSI. What is needed is to identify in a better 

reflection record (which S2 passing day) links with the measure SOC values. The next step is to 

use data describing farming activities as markers in this process. We will collaborate with LV 

on this. The use of the median values has limitations, and we are trying to apply alternatives.  

• Phase Two: Using more advanced algorithms is an option; however, we need first to generate 

data sets that describe the mapping better. So we will also use the soil association as input 

parameters and the period of the collection, for example, the month (Figure 65). 

• Phase Three: Decisions on phase One and Two effects significantly affect how we deploy the 

models. It's impossible to deploy the model on the synthetic layer consisting of the median 

reflecting values. We need to identify different approaches that are compatible with the 

structure of the model but also deliver the needed coverage and transfer the accuracy of the 

model to the SOC products. That is the challenge we need to deal with, and we need to deliver, 

for example, answers to the following questions: 

o How is the accuracy of the model inherent to the SOC products? 

o Is it possible to apply a model that relies only on reflections from the sampling 

collecting period (Q1) to a collection consisting of reflections from a non-similar period 

(Q1 – Q4) as a way to increase the coverage?  

o Is it enough to deliver an accurate SOC map that covers only 20% of the agricultural 

area uniformly? 

o We can see that we significantly populate the training and validation data set; 

however, we need to validate this approach. Can we identify reflections signatures by 

applying functions (for example, min) to specific indices (NDVI)? Is it possible to link 

SOC results to many reflection signatures from the same pixel area? Or do we need to 

select reflection signatures that satisfy specific criteria, for example, to exist in the 

same period (Quarters or months)? 

• We need to increase the validation set further. To achieve this, we plan to use the data set of 

the Flemish soil monitoring framework. The data are expected to be available, and at 

ENVISION, we have foreseen to follow the same collection protocol. 

Use farming activities as 
Markers

Include soil and period as 
input parameters

Enrich the validation set

Identify alternatives to 
synthetic layers both on 

modeling and deployment.
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Figure 65. Visualization of the interaction between the collection period and the SOC values. 

 

3.4 BC4: Monitoring of organic farming requirements – Serbia 

3.4.1 Pilot and samples description 

 

The methodological framework for the Organic Crop Practice Identification product for the Serbian 

business case is described in detail in D3.3. and is composed of the model training methods and model 

deployment methods in the traffic light system, at the operational mode of the service. The validation 

of the product consisted of the successive preliminary steps of Vegetation Feature extraction from 

Sentinel 2 images and Ground truth data sampling of the EO derived products, which resulted to the 

creation of the training -validation dataset, and the resultant application of a machine learning 

framework for the creation of crop specific models. The service addresses to 2 Certification Bodies of 

Serbia and thus the pilot area support for the Lighthouse customers of the project is the whole Serbia 

country region. However, the product validation was conducted a small data subset of the Serbia LPIS, 

provided along with the Organic/Conventional farming practice declaration, the Certification bodies. 

The spatial data include parcels from 4 crops of interest, namely Maize, Soybean, Sunflower and 

Wheat, and a general preview of the geographic distribution of the data is presented on the following 

map. 
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Data collection for validation purposes included crop declarations from the years 2016-2021, and the 

count statistics for each crop is presented on the following tables, as well as a summary table for total 

dataset area available for training/ validation.  

 

Table 17. Count Stats of parcels for Wheat Organic and Wheat Conventional 

Wheat Organic 
Organic 

Dissolved 
Conventional 

Conventional 

Dissolved 
Total 

Total 

Dissolved 

2016 87 35 2 2 89 37 

2017 65 25 4 4 69 29 

2018 198 41 187 109 385 150 

2019 77 20 213 128 290 148 

2020 217 68 219 137 436 205 

2021 132 31 28 15 160 46 

Total 776 220 653 395 1429 615 

Mean 3.51 13.76 1.19 1.97   

St Dev 9.07 18.86 2.11 2.88   

Min 0.1 0.01 0.07 0.15   

Max 84.36 90.5 32.74 32.74   

Figure 66. Geographic distribution of organic/conventional parcels for the 4 crops of interest 
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Table 18: Count Stats of parcels for Maize Organic and Maize Conventional 

Maize Organic 
Organic 

Dissolved 
Conventional 

Conventional 

Dissolved 
Total 

Total 

Dissolved 

2016 79 22 4 4 83 26 

2017 15 10 10 9 25 19 

2018 8 8 242 118 250 126 

2019 35 10 355 164 390 174 

2020 8 6 365 188 373 194 

2021 27 17 77 34 104 51 

Total 172 73 1053 517 1225 590 

Mean 4.72 12.54 1.52 3.05   

St Dev 2.67 19.91 3.67 5.36   

Min 0.5 0.04 0.01 0.07   

Max 21 80.41 57.51 57.51   

 

Table 19: Count Stats of parcels for Soybean Organic and Soybean Conventional 

Soybean Organic 
Organic 

Dissolved 
Conventional 

Conventional 

Dissolved 
Total 

Total 

Dissolved 

2016 89 19 6 6 95 25 

2017 71 20 7 7 78 27 

2018 13 10 51 33 64 43 

2019 17 9 78 38 95 47 

2020 5 5 68 40 73 45 

2021 18 6 6 6 24 12 

Total 213 69 216 130 429 199 

Mean 2.89 15.86 3.49 5.00   

St Dev 1.08 21.40 0.53 12.11   

Min 0.09 0.09 0.3 0.26   

Max 10 88.6 4.9 118.61   

 

Table 20: Count Stats of parcels for Sunflower Organic and Sunflower Conventional 

Sunflower Organic 
Organic 

Dissolved 
Conventional 

Conventional 

Dissolved 
Total 

Total 

Dissolved 

2016 288 68 4 3 292 71 

2017 89 21 4 4 93 25 

2018 58 17 88 51 146 68 

2019 96 34 130 78 226 112 

2020 101 19 173 110 274 129 

2021 11 9 13 12 24 21 

Total 643 168 412 258 1055 426 

Mean 2.08 12.42 3.37 2.24   

St Dev 0.96 17.90 0.60 3.02   

Min 0.01 0.01 2.2 0.26   

Max 6.2 135.95 9.5 29.46   



 
 

70 

 
The ENVISION project has received funding from the European Union’s Horizon 2020 research 

and innovation programme under grant agreement No 869366 

Table 21: Total Area Stats of parcels for all crops, Organic and Conventional 

  
Total Area (ha) 

Conventional Organic 

maize 1244.36 159.91 

soybean 492.82 544.34 

sunflower 501.22 936.91 

wheat 692.93 2058.98 

 

The main particularities faced on the validation of the Organic Crop Practice Identification with EO 

data, service product, were: 

 

• The very small and elongated parcel geometries, found on the Serbian LPIS. This local spatial 

characteristic, keeping in mind an additional boundary buffer clipping, limits significantly the 

data sampling availability. 

• The cloudy weather conditions. Clouds and shadows are masked from the NDVI images, which 

results on many gaps on the timeseries. This particularity is partially handled by temporal 

interpolation pre – processing of the NDVI image stack. 

• The unbalanced dataset between organic and conventional parcels. As it can be noticed from 

the tables above, some crops have quite unbalanced distribution. Trying to prevent biasing the 

ML models, a lot of data pixels remained finally unused in the training/validation process. 

 

3.4.2 Validation results 

The steps that followed for the training of ML models for organic practice identification is presented 

on the following flowchart. 

Figure 66: Methodological framework for the training of ML models for organic practice identification 
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Regarding the Vegetation Feature Extraction from Sentinel 2 images, a stick masking approach was 

followed, allowing only vegetation and barren land pixels to pass, and filtering out the effects of cloudy 

atmospheric conditions. This resulted on the rejection of 48% of the available data, and as a counter 

action for the recovery of the NDVI profiles, an interpolation method was applied. The following graph 

shows the results of gap – filling techniques to the restoration of the timeseries, that are considered 

reasonably satisfactory. Despite the fact that the decision rule for the masking was strict, not allowing 

ambiguous land cover pixels (dark objects, unclassified), the spline interpolation provided better 

results that it would if the abovementioned classes were considered valid. 

Phenology feature extraction was approached through the calculation of metrics such as the Crop 

Growth slope, the Length of the NDVI plateau and Senescence slope, with an assumption that these 

features could act as discriminant information in order to identify organic farming. On the following 

graphs, two typical cases of conventional and organic maize crop NDVI profiles are presented along 

with the values of the calculated phenology metrics. Indeed, an indication exists that the phenology 

assumption actually holds true and that the extracted features could be of significant importance in 

the classification process.  The NDVI plateau length seems to be larger on conventional crops, while 

the emergence/senescence slopes seem to be steeper. 
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Figure 67: Gap Filling of NDVI profiles on a Maize crop parcel 
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Figure 68: NDVI profile and Phenology metrics for Conventional Maize Crop 

 

 
Figure 69: NDVI profile and Phenology metrics for Organic Maize Crop 

 

The classification task regarded the binary discrimination of organic/conventional farming practice on 

4 main crops of interest. For winter crops, emerging from mid-October to early August, the models 

regard wheat, and sunflower, while for the summer crops, emerging from April to September, they 

predict for maize and soybean. Modeling considers EO timeseries profiles from the whole growing 

cycles, therefore prediction occurs at the end of the growing season, as defined by the harvesting date 

of the crop. 

 

The main properties of the Machine Learning framework that was followed for the validation of the 

product is summarized on the following table. As a result, 4 crop specific models were trained. 
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Table 22: Main ML methodological framework 

ML Framework 

Data Sampling  Pixel based - Random Points 

Outlier Analysis PCA - Residuals & Influence 

Classifier C-SVM 

Preprocess Center & Scale at [-1,1] 

Kernel Radial Basis Function 

Hyperparameters Grid Search Cost (C) 

Epsilon (ε) 

Gamma (γ) 

Model Validation Method Nested Resampling 

Model Evaluation Metrics Overall Accuracy 

Precision 

Recall 

F1 Score 

Kappa 

 

The following table summarizes the classification results, evaluated through the nested cross 

validation resampling. Overall prediction accuracies showcase relatively medium performance 

remaining in the range of 65 – 73,4 %. Especially the Maize model has a value of Khat of 59% which is 

low performance, obviously related to the small sample support for the organic class. Some derived 

conclusions from this first iteration of model training concern issues such sample data support, or the 

need of further introduction of more image features as predictor variables, and they are referenced 

on the Limitations and Next Steps subchapter that follows. 

Table 23: Classification Results from Crop Specific models evaluation 

  F1 Score Overall Accuracy Kappa 

Winter Crops 
Wheat 0.72 0.73 0.67 

Sunflower 0.70 0.71 0.65 

Summer Crops 
Maize 0.64 0.65 0.59 

Soybean 0.65 0.67 0.61 

 

3.4.3 Limitations and Next steps 

In this deliverable, a preliminary version of the Organic Crop Practice Identification product service was 

provided, bringing on a first iteration of results that showcase medium prediction performances, as 

concluded from the models’ evaluation. The limitations present on this BC are related to 

 

• The limited sample data support. The particularity of small and elongated parcels, and the 

boundary buffering that occurred in order to enhance the reliability of the sampled pixels, 

further decreased the total number of parcels. 

• Uncertainty with regards the validity of the organic parcel declarations. It is believed that there 

were cases of wrongly declared parcels cultivations in order to comply with local subsidy 
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regulations. The case of instances where several cultivations in the same parcel declared as 

one, furtherly made things more complicated. Outlier analysis helped in order to filter out non 

reliable data, but due to its unsupervised nature, it performed well in the cases where the 

feature space data clouds had good separability properties. 

• Spatial distribution of organic/conventional sample data of the same crop, shows that these 

may be located far apart from each other, and this fact may introduce small shifts on the 

timeseries temporal scale due to slightly different sowing/harvest dates related to local 

climatic conditions.  

• The issue of Spectro-temporal separability is considered key, on the task of classifying organic 

from conventional farming practice. NDVI profiles of these 2 classes seem to be overlapping 

on the created feature space.  

• The phenology features that were incorporated in the models seem to help discrimination in 

a significant manner, but we simply may need to add more image features in order to enhance 

the classifier. 

 

The next steps over which, model training and product validation will focus on future iterations, will 

consider the following actions and improvements: 

• Sample dataset enhancement through the request from the Serbia CBs of more validation data 

that concern the same spatiotemporal extent (2016-2021). 

• Incorporation of EO Image Texture features in the classification predictors. An assumption has 

been made that Organic vs Conventional farming practice may imprint significant spatial 

patterns and context of NDVI values regarding the homogeneity of radiometric values across 

different spatial lags. We believe that the assimilation of GLCM image texture features, such 

as Contrast, Entropy and Correlation, derived from the NDVI layers, will improve the 

classification results. 

• The further use of more phenology features is as well considered for the improvement of the 

classifiers’ performance. Specifically, the extraction of NDVI 1st and 2nd Derivative layers with 

the use of Savitzky- Golay moving window filtering algorithm, will accentuate the rates of 

change throughout the profile, and may help on the classifier improvement, in a significant 

manner. 

• The use of H.H Resolution imagery will also be considered, with the suggestion of the 

Planetscope product, as a solution in order to deal with the small /elongated parcel geometries 

and validate the existence of more complex structures inside the parcels. 
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4 Conclusions 

 

This deliverable is the first version of the EO data product validation report, providing the initial results 

that derived from the services development/ training based on historical data that were provided from 

the business cases’ users. Further development/ training/ analysis will be performed and the final and 

updated results of the data product validation process will be presented in the D3.6 Data product 

validation report (final version) at M34. 
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