

Evaluation of Earth Observation Products and Their Potential for Crop Damage and Crop Loss Assessment. **The Case of Beacon Project.**

Earth Observation services in support of agriculture and Common Agricultural Policy

Dr Emanuel Lekakis, Agriculture Engineer

BEAC BIT transforms the Agri-Insurance Sector...

Uncertainty of Future Risk

Higher Operational & Administrative costs

Low market uptake & High Premiums

To... Meathe r Risk Costs Remote Damage Estimation reduces Operational costs Market Market uptake & Affordable Premiums

...by upscaling EO Data value

BEAC N Drought Damage Assessment

Satellite Drought Indicator

MODIS Terra GMOD09Q1 product

Drought Damage Assessment

The Spanish use case

Data collection and preprocess

Satellite Data

MODIS NDVI 8-day composites (250 m resolution)

$\begin{aligned} \text{Relative NDVI Anomaly} \\ \text{NDVIA(\%)} &= \frac{\text{NDVI}_{\text{current}} - \text{NDV I}_{\text{mean}}}{\text{NDVI}_{\text{mean}}} \cdot 100 \end{aligned}$

NDVI current is the current 8-day NDVI composite NDVI mean is the average NDVI from 2001 for the same 8-day period

Relative NDVI – Anomaly calculation

BEACON

BEAC N Drought Damage

Assessment

- The approach was applied for both rainfed wheat and barley.
- Only damaged parcels data were used.
- Different metrics of the NDVIA were tested.

Indicator – Impact functions

Correlation between drought damage and NDVI Anomaly metrics

BEACON

BEAC N Drought Damage Assessment was

moderately strong correlated with the damage.

 Accumulation of absolute negative NDVI-Anomaly lower than -25% during May was moderately strong correlated with the damage (r = 0.587)

Indicator – Impact functions

×	Best fit for damage quantification (%)	RMSE (in %)	nRMSE	MAE (in %)	r
Accumulation of positive and negative NDVIA values throughout the growing season	sqrt(6472.31 - 1.53753x)	18.57	23.69	11.59	-0.140
Accumulation of positive and negative NDVIA values from sowing until 1 st May	(8.61906+0.000779977x) ²	20.03	25.51	16.34	0.143
Accumulation of positive and negative NDVIA values from 1 st April until harvest	(7.97835-0.00489403x) ²	20.49	27.24	15.67	-0.557
Accumulation of absolute negative NDVIA from 1 st April until harvest	exp(3.70932+0.0434447sqrtx)	20.42	25.78	16.19	0.482
Accumulation of absolute negative NDVIA from sowing until 1 st May	exp(4.34483-0.00000163952x ²)	18.23	24.06	14.66	-0.170
Accumulation of absolute negative NDVIA lower than -25% throughout the growing season	(7.43214+0.0995222sqrtx) ²	15.70	20.10	11.39	0.372
Accumulation of absolute negative NDVIA lower than -25% from 1 st April until harvest	(7.01467+0.154791sqrtx) ²	14.53	18.51	11.13	0.530
Accumulation of absolute negative NDVIA lower than -25% during May	exp(3.82504+0.0587201sqrtx)	18.67	23.14	14.89	0.587
Accumulation of absolute negative NDVIA lower than -25% during April and May (8 values)	exp(3.96415+0.0394364sqrtx)	18.80	23.64	14.04	0.504
Accumulation of absolute negative NDVIA lower than -25% during March, April and May (12 values)	exp(3.91805+0.0436961sqrtx)	22.78	29.21	17.81	0.558
Accumulation of absolute negative NDVIA lower than -25% during May and June (8 values)	exp(3.79778+0.0484829sqrtx)	19.22	24.99	14.10	0.629
Accumulation of absolute negative NDVIA lower than -25% during June (4 values)	exp(3.86061+0.0671895sqrtx)	18.60	23.20	14.12	0.560

Limitations of NDVI-Anomaly for claimbased insurance

- Results are crop and region specific. Are they PARCEL-SPECIFIC too?
- Does NDVIA reflect historically the same crop? Should all previous seasons (2001-2020) be used?
- How can we take into account the dynamics of the parcels?

NDVI-Anomaly of damaged and non-damaged parcels is

The historical NDVI timeseries may not necessarily reflect previous wheat and barley crops at the same parcel, but also incorporation of other crops through a rotation program or even fallow land.

Results should take into account only wheat and barley cropping seasons. Seasons not affected by drought.

NDVI of damaged and non-damaged parcels is similar:

- There is probably a lag between drought effects and NDVI (impact on vegetation reflected on NDVI)
- 2. The dynamics of a parcel are not apparent on EO data -NDVI. This is the reason yield prediction fails.
- 3. Damaged and non-damaged parcels should be examined separately.

BEAC

BEAC N Hail damage assessment

Change detection – VI differencing $I_{pre} - VI_{post}$ · 100 VI_{post}

Pre-damage Image

Post -damage Image

Sentinel-2 Optical VIs Sentinel-2 Biophysical Parameters Sentinel 1 Radar VIs

Hail Damage Assessment

The Serbian use case

The Serbian use case

Geospatial Data

	Hail			Non-Damaged			
Year	whe	eat	maize	soybe an	wheat	maize	soyb an
2015-2016	-		26	22	-	-	-
2016-2017	-		16	11	-	-	-
2017-2018	59	9	1	24	-	-	-
2018-2019	-		-	-	-	55	66
2019-2020	3.	3	26	39	16	15	7
Total	9	1	69	86	16	70	73
Crops			Whea so				
Region		Vojvodina)		
Damage		5 – 100%					
Parcel size			0.1	– 55 ha	a		

trialav

Satellite Data

Sentinel-1, Sentinel-2 Damage Percentage Index (DPI):

 $DPI (\%) = \frac{VI_{pre} - VI_{post}}{VI_{post}} \cdot 100$

Sentinel-2 Optical VIs **NDVI, GNDVI, MCARI, REIP** Sentinel-2 Biophysical Parameters **LAI, fAPAR, fCOVER** Sentinel 1 Radar VIs **MPDI, VH/VV, VV and VH backscatter** signals

BEAC N Hail damage assessment

- Object-(parcel)-based methodology.
- The approach was applied separately for wheat, maize and soybean.
- SAR and Optical VIs were tested against ground truth data.
- VI differencing in the in the first available pre- and post-damage image.
- Only damaged parcels data were used.

Simple VI differencing

		Metric	Value
		Mean Error (ME)	-1.7%
Whaat	NDVI _{pre} - NDVI _{post} , 100	Root Mean Square Error (RMSE)	20.4%
viieai	NDVI _{post}	Coefficient of Residual Mass (CRM)	0.07
		Correlation Coefficient (R ²)	0.23
		Metric	Value
		Metric Mean Error (ME)	Value -3.1%
	LAI _{pre} - LAI _{post}	Metric Mean Error (ME) Root Mean Square Error (RMSE)	Value -3.1% 8.5%
Maize	$\frac{\text{LAI}_{\text{pre}} - \text{LAI}_{\text{post}}}{\text{LAI}_{\text{post}}} \cdot 100$	Metric Mean Error (ME) Root Mean Square Error (RMSE) Coefficient of Residual Mass (CRM)	Value -3.1% 8.5% 0.17

BEACON

BEACN Machine learning for hail damage

assessment

Object-(parcel)-based methodology.

A general model and three crop-specific models for wheat, maize and soybean.

Two ML algorithms: i. Support Vector Machines (SVM) and ii.
 Random Forest (RF)

Only optical VIs were used as training data.

OPI obtained by the 6 days-pre and 20 days-post damage image.

Damaged and non-damaged parcels were used.

BEAC N Machine learning for hail damage assessment

			SVM Reg	ression				
Crop	Outlier Detection	Feature Selection	RMSEC	R^2 Cali	RMSEV	R^2 Vali	RPD	RPIQ
All	PCA Res & Inf	All	1.89	0.99	17.53	0.21	1.13	1.14
Maize	PCA Maha	SBF	7.20	0.61	8.98	0.41	1.30	1.67
Soybe an	PCA Maha	HS p-value	18.02	0.54	20.38	0.41	1.25	1.47
Wheat	PCA Maha	SBF	8.62	0.58	10.57	0.38	1.24	1.28
		S/	/M Class	ificatior	า			
	Outlier	Feature	Overall N	/letrics	By Cl		s Metrics	
Crop	Detection	Selection	Accuracv	Карра		Precisio) Recall	F1
				тарра	0 1006	n 0.52	0.09	0.60
		All	0.577	0.190	10.20%	0.03	0.98	0.69
All	PCA Maha				20.70%	0.92	0.27	0.42
					30-70%	NA NA	0	
					0-10%	0.6	0.68	0.63
	ize PCA Res & Inf	All	0.620	0.280	10-30%	0.65	0.65	0.65
Maize					30-70%	NA	0	NA
					70-100%	NA	NA	NA
	be				0-10%	0.51	1	0.67
Sovbe					10-30%	NA	0	NA
an PCA Res & Inf	All	0.514	0	30-70%	NA	0	NA	
					70-100%	NA	0	NA
		SBF	0.428	-0.060	0-10%	0.44	0.92	0.6
Wheat A					10-30%	0	0	NA
	All Data				30-70%	NA	0	NA
					70-100%	NA	NA	NA

Limitations of

DPI

 DPI is almost unable to discriminate damage during senescence and physiological maturity. The ML regression model for damage percentage with change detection could work for certain crop stages

BEAC²N

Partners

• • •

karavias

AgroApps

۶ ETHERISC

etam.

Redefining Agricultural Insurance tools

For more information visit: http://beacon-h2020.com

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 821964.